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Abstract� Previous bias shift approaches to predicate invention are not
applicable to learning from positive examples only� if a complete hypoth
esis can be found in the given language� as negative examples are required
to determine whether new predicates should be invented or not� One ap
proach to this problem is presented� MERLIN ���� which is a successor
of a system in which predicate invention is guided by sequences of input
clauses in SLDrefutations of positive and negative examples w�r�t� an
overly general theory� In contrast to its predecessor which searches for
the minimal �nitestate automaton that can generate all positive and no
negative sequences� MERLIN ��� uses a technique for inducing Hidden
Markov Models from positive sequences only� This enables the system
to invent new predicates without being triggered by negative examples�
Another advantage of using this induction technique is that it allows
for incremental learning� Experimental results are presented comparing
MERLIN ��� with the positive only learning framework of Progol 	��
and comparing the original induction technique with a new version that
produces deterministic Hidden Markov Models� The results show that
predicate invention may indeed be both necessary and possible when
learning from positive examples only as well as it can be bene�cial to
keep the induced model deterministic�

� Introduction

Bias shift approaches to predicate invention �e�g� ���� 	� 
� �� �	�� introduce new
predicates whenever the learning method fails to produce a consistent hypothesis
in the given language ���� This means that as long as it is possible to formulate
a complete hypothesis in the given language �i�e� such that all positive examples
are covered�� negative examples are necessary for detecting inconsistency� and
thus for inventing new predicates��

� Other approaches to predicate invention according to ���� fall outside the scope
of this work� These are reformulation approaches� which uses predicate invention for
optimising a theory w�r�t� size or compression� and transformation approaches� which
base their decision on introducing new predicates on the operationality or e�ciency
of the induced hypothesis�



In this work we present one approach to this problem� the system MERLIN
����� The system is a successor of MERLIN ��� ���� which uses an overly gen�
eral theory to �nd SLD�refutations� of positive and negative examples� and then
searches for the minimal �nite�state automaton that can generate all sequences
of input clauses in the SLD�refutations of the positive examples and none of the
sequences in the SLD�refutations of the negative examples� For example� assume
that we are given the following overly general theory T �

�c�� p�����

�c�� p��a�L���	 p�L��

�c� p��b�L���	 p�L��

together with the positive examplesE� � fp��a
a
a
b
b���p��a
a
b
b
b
b��g
and the negative examples E� � fp��a��� p��a
b
a��g� The corresponding
positive sequences are fc�c�c�ccc�� c�c�ccccc�gand the negative sequences
are fc�c�� c�cc�c�g� The minimal automaton found by MERLIN ��� that is con�
sistent with these sequences are�

c1

c2 c3

c3

This automaton is used together with the overly general hypothesis to con�
struct the folllowing hypothesis�

p��a�A�� �	 p�A��

p��b�A�� �	 p���A��

p�������

p����b�A�� �	 p���A��

Note that without the invention of a new predicate �in this case p���� it is
not possible to formulate the hypothesis that the argument of p should be a list
in which all a�s are followed by one or more b�s�

Clearly� if MERLIN ��� is given positive examples only� there is nothing that
prevents the system from reducing the automaton to a one�state automaton that
accepts all strings consisting of symbols that appear in the positive sequences�
In the above example� this would result in a hypothesis identical to the overly
general theory� In order to overcome this problem� MERLIN ��� uses a technique
for inducing Hidden Markov Models from positive sequences only ����� that in�
stead of minimising the size of the resulting automaton maximises the posterior
probability� This enables MERLIN ��� to invent new predicates without being
triggered by negative examples� In the next section� we present the technique
for inducing Hidden Markov Models as well as a new extension which makes the
induced Hidden Markov Model deterministic� In section three it is shown how

� The system can be obtained from http���www�dsv�su�se�ML�MERLIN�html
� Familiarity with logic programming terminology is assumed ����



this technique is incorporated in MERLIN ���� In section four� we present exper�
imental results comparing the system with positive only learning in Progol ���
���� ��� as well as comparing the deterministic and non�deterministic versions of
the technique for induction of Hidden Markov Models� Finally� in section �ve we
give concluding remarks and point out directions for future research�

� Induction of Hidden Markov Models

We �rst give a de�nition of Hidden Markov Models adopted from ���� and then
brie�y present the technique for inducing Hidden Markov Models that was in�
troduced in �����

��� Hidden Markov Models

Hidden Markov Models �HMMs� can be viewed as a stochastic generalisation
of the non�deterministic �nite automata �NFAs� ���� As NFAs� HMMs accept
�or generate� strings over the alphabet by non�deterministic walks between the
initial and �nal states� In addition� HMMs also assign probabilities to the strings
they generate� computed from the probabilities of individual transitions and
emissions� These concepts are de�ned formally below�

De�nition �� A Hidden MarkovModel is a quintupleHMM � �Q��� qI � qF � P �
where Q is a set of states� � is an output alphabet� qI is the initial state� qF
is the �nal state and P is a set of probability parameters� consisting of transi�
tion probabilities p�q � q�� specifying the probability that state q� follows q� for
all q� q� � Q and emission probabilities p�q � �� specifying the probability that
symbol � is emitted while in state q for all q � Q and � � �� It is assumed that
p�q � qI� � p�qF � q� � � for all q � Q and p�qI � �� � p�qF � �� � � for all
� � ��

De�nition �� An HMM is said to generate a string x � ���� � � ��l � �� if
and only if there is a state sequence� or path� qIq�q� � � � qlqF � Q� with non�zero
probability� such that qt outputs �t with non�zero probability for t � �� � � � � l�
The probability of a path is the product of all transition and emission probabilities
along it�

De�nition �� The structure or topology of an HMM consists of its states Q� its
outputs �� a subset of its transitions q � q� with p�q � q�� � � and a subset of
its emissions with p�q � �� � ��

De�nition �� The conditional probability P �xjM� of a string x � �� � � ��l given
an HMMM is computed as the sum of the probabilities of all paths that generate
x�

P �xjM� �
X

q����ql�Ql

p�qI � q��p�q� � ���p�q� � q�� � � � p�ql � �l�p�ql � qF �



��� Induction of Hidden Markov Models

Traditional HMM estimation is based on the Baum�Welch algorithm ��� which
assumes a certain topology and adjusts the parameters so as to maximise the
model likelihood on the given samples� However� as we are primarily interested
in �nding the topology� and not the parameters� the technique in ���� is more
appropriate than the former� as it in contrast to the former can be used for
�nding the HMM with maximimal posterior probability of the structure�� We
�rst introduce the concept of posterior probability of an HMM structure accord�
ing to ���� and then present their Best��rst merging algorithm for �nding an
HMM with maximal posterior probability� Finally� we present an extension to
the algorithm that forces the induced HMM to be deterministic�

Posterior probability for HMM structures We assume that there exists
a distribution P �M� independent of the data that assigns each model M an a

priori probability� i�e� a bias� A model M can be decomposed into its structure
partMS and its parameter part �M � and the prior P �M� can therefore be written
as�

P �M� � P �MS�P ��M jMS� ���

Given some data X � the problem is to �nd a model structure that maximises
the posterior probability P �MS jX�� Bayes� Law expresses the posterior as�

P �MS jX� �
P �MS�P �X jMS�

P �X�
���

Since the data X is �xed� this amounts to �nding a model that maximises
P �MS�P �X jMS�� Using the Dirichlet distribution as a parameter prior and a de�
scription length prior for the structure together with the Viterbi approximation�

and the assumption that the Viterbi paths do not change as �M varies� the
expression to be maximised� P �MS�P �X jMS�� can now be written�

Y

q�Q

�jQj� ���nt�q��j�j� ���ne�q�F �tq� � � � � � tqnt�q� �F �eq� � � � � � tqne�q� � ��

where tqi and eqi are the total counts of transitions and emissions� called Viterbi

counts� occurring along the Viterbi paths associated with the samples in X and
the n�dimensional function F �t�� � � � � tn� is de�ned as�

F �t�� � � � � tn� �
B�t� � ��n� � � � � tn � ��n�

B���n� � � � � ��n�
���

� The BaumWelch algorithm can in principle also be used for �nding a structure� as it
may set some parameters to zero� but it requires that the maximal number of states
is known and also that initial values are chosen for the model parameters� a choice
of which the outcome of the algorithm is highly dependent�

� All paths except the most likely one� called the Viterbi path� are assumed to have
zero probabibility�



where B���� � � � � �n� is the n�dimensional Beta function�

B���� � � � � �n� �
	 ���� � � �	 ��n�

	 ��� � � � �� �n�
���

Best��rst merging Below we present the incremental version of the Best��rst
merging algorithm in ����� It takes as input a sequence of samples� incorporates
them one by one into the current model and after each incorporation uses Hill�
Climbing �with look�ahead� to �nd a new current model with maximal posterior
probability by merging states� After all samples are processed� the current model
is returned� Since the calculation of the posterior probability uses Viterbi counts�
rather than transition and emission probabilities� such are kept by the algorithm�

The incorporation of a new sample x � �� � � ��l into an existing model M
results in that a set of new states q�� � � � � ql are added to Q and that the Viterbi
counts for the transitions qI � q�� qi � qi � �� � � i � l � �� and ql � qF and
the emissions qi � �i� � � i � l� are set to one� When merging two states� the
corresponding Viterbi counts are added and recorded as the counts for the new
state�

function Best��rst merging�x� � � �xn� LookAhead�
M �� the empty model
for i �� � to n do
Incorporate xi into M � L �� LookAhead and B ��M
repeat

Let C be the set of models obtained from merging two states in B
Let B � C be the model with maximal posterior probability P �BjX�
if P �BjX� 
 P �M jX� then M �� B� L �� LookAhead else L �� L� �

until L � � or C � �
return M

Example After having incorporated one sample x� � c�c�c�cccc� into the
empty model� the resulting model is as follows�

F

c2 c2 c2 c3 c3 c3 c1

I

One of the models with highest posterior probability obtained from merging
two states is obtained by merging the last two states that emit c� However�
the posterior probability of this model is less than the initial model� but if look�
ahead is allowed� the merging of the two states emitting c in this model gives a
model with higher posterior probability than the initial one� The merging process
continues with the above model� eventually reaching the following model �using



one�step look�ahead��	

c1c2

I

c3

F

Inducing Determistic HMMs Whenever a new sample is to be incorporated
into the current model� a large part �or even all� of it may in fact already be
accepted by the model� requiring little �or no� factual alterations to the model�
The Best��rst merging algorithm� however� generates a completely new sub�
model for each sample and relies on the merging process to eventually incorporate
the sample in the best way� In many cases� this is not only ine�cient but may also
mislead the Hill�Climbing search� as the chances of making the wrong choices
increases with the number of states� The above approach can be viewed as being
maximally pessimistic regarding the use of the current model for generating the
new sample�

One could also consider a maximally optimistic version� which incorporates
the sample into the existing model as far as possible� Assuming this means
incorporating the longest pre�x of the sample for which there is a path in the
current model� this can be done e�ciently by keeping the model deterministic�
i�e� no state may have transitions leading to two di�erent states that emit the
same symbol� When incorporating a new sample� determinism is kept by aligning
the sample as far as possible with the current model
� introducing new states
and transitions only for the su�x of the sample for which there is no path in
the current model� When having merged two states� determinism can be kept
by checking whether the new state has transitions leading to two di�erent states
that emit the same symbol� and if so� merging these two states� In section �� we
empirically compare the pessimistic with the optimistic approach�

� MERLIN ���

Having induced an HMM that shows what sequences of input clauses are allowed
in SLD�refutations of a given theory� MERLIN ��� produces a new theory that
allows only those sequences that are allowed by both the original theory and the
induced HMM� This is done by �rst converting the HMM into an NFA and by
representing the set of sequences allowed by the given theory as a context�free
grammar� and then deriving the intersection of the NFA and the �rst grammar�
Finally� the intersection is used to produce the resulting hypothesis�

��� Converting an HMM into an NFA

The construction of an NFA from the structure of an HMM can be done in
two ways� for each state� either the transitions leading from the state or the

� It should be noted that the term P �XjMS� prevents the HMM to be further reduced
as the conditional probability of the sample would decrease�

� This includes updating the Viterbi counts�



transitions leading to the state are labeled with the symbols emitted by the
state� We have chosen the latter option� since it avoids introducing transitions
labeled with the empty string� Furthermore� all states with transitions leading
to the �nal state in the HMM will become �nal states in the NFA�

Example The �nal HMM in the last example is converted into the following
NFA�

c3

c3

c1

c2

c2

��� Representing the Theory as a Context�Free Grammar

The set of possible sequences of input clauses in SLD�refutations of any instance
of a goal G for a given program P can be represented by a context�free grammar�
referred to as a proof grammar� �S�R�� where S is the start symbol and R is a
set of rules� where each rule is on the form L � CR� � � � Rn� where n 	 ��
L�R� � � � Rn are non�terminal symbols and C is a terminal symbol� Below� we
show how to produce such a grammar by an example �for algorithmic details see
�����

Example Given the goal ��	 p�L�� together with the program in section ��
the above procedure produces the following proof grammar �p��� R�� where R is
the following set of rules�

p��� c�
p��� c� p��
p��� c p��

��� Deriving the Intersection

The intersection of a context�free language and a regular language is a context�
free language ���� In ���� a derivation of the algorithm in ��� is presented� which
�nds a context�free grammar that represents the intersection of a proof grammar
and an NFA�

Example Given the NFA and the proof grammar in the previous examples� the
following rules are produced by the procedure mentioned above� together with
the start symbol �p��� q�� ��

��

� Dead rules have been removed�



�p��� q�� ��� c� �p��� q�� ��
�p��� q�� ��� c� �p��� q�� ��
�p��� q�� ��� c �p��� q�� ��
�p��� q�� ��� c�
�p��� q�� ��� c �p��� q�� ��

��� Producing the Final Program

Having derived the intersection of the learned automaton and the original proof
grammar� MERLIN ��� produces the �nal hypothesis in the form of a logic
program� in which there is one clause for each rule in the intersection� and where
each predicate symbol corresponds to a non�terminal symbol� This is achieved
using the procedure presented in ����

Example Given the context�free grammar in the previous example� together
with the predicate symbol p��� the above procedure produces the following pro�
gram�

p��a�A�� �	 p���A��

p����a�A�� �	 p���A��

p����b�A�� �	 p���A��

p�������

p����b�A�� �	 p���A��

� Empirical Evaluation

In this section we present an empirical evaluation of the performance of MERLIN
��� both with the original Best��rst merging algorithm and with the extension
that forces the algorithm to produce deterministic HMMs� MERLIN ��� is also
compared to Progol ���� which is able to learn from positive examples only� but
not to invent new predicates��� We �rst present the theories and example sets
that were used in the experiments and then the experimental results�

	 The lookahead was set to � for the nondeterministic version and to � for the deter
ministic version� Following ��	�� a logarithmic version of Bayes� law was used in the
implementation including a global prior weight �� giving � log P �MS�� log P �XjMS�
as the quantity to be maximised� � was set to ���� for the nondeterministic version
and to ���� for the deterministic version� Furthermore� both versions �rst work in
an incremental phase� in which states may only be merged if they have identical
emissions and then in a second� nonincremental phase� in which all states may be
merged�

�
 The default parameter settings were used in Progol except for the posonly parameter
which was set to ON and the variable depth parameter �i� and the maximum clause
length �c�� which were set to ��



��� Domains

The �rst theory that was investigated is the following�

�c�� nn����

�c�� nn�s�X���	 nn�X��

The entire set of examples consisted of the �rst �� natural numbers� where the
instances were classi�ed as positive if they were odd� and negative otherwise �i�e�
��� positive examples�� A correct de�nition of the odd numbers can be found
without inventing new predicates� which means that Progol at least in theory is
able to �nd it�

The second theory that was investigated is the same as presented in section
�� and the set of positive examples consisted of instances of p�L� where L con�
tained up to � elements representing the regular expression a�b�a�� A set of
negative examples was generated by randomly replacing one of the elements in
each positive example with the other constant� such that the new instance did
not belong to the set of positive examples� The total number of examples in this
set is �� �of which ��� are positive�� It should be noted that a correct hypothesis
can not be produced for this domain without predicate invention�

The third theory extends the previous with one additional recursive clause�
allowing the constant c to appear in the lists� The set of positive examples
consisted of instances of p�L� where L contained up to  elements representing
the regular expression ac�a 
 bc�b �this target was also used in ������ The set of
negative examples were generated in the same way as for the previous domain�
resulting in a set of ��
 examples in total �of which ��� are positive��

The fourth theory and example set that were investigated were taken from
���� where the target predicate turing�M� represents a sequence of movements
of a Turing machine� where each move is on the form �Read�Write�Move� and
the positive examples correspond to movements of a Turing machine performing
addition� The total number of examples for this domain was �� �of which ���
were positive��

��� Experimental Results

Each set of positive examples and each set of negative examples were randomly
split into two halves� One half of the positive examples together with one half of
the negative examples were used for testing� Subsets of the other half of positive
examples were used for training� and the number of examples in these sets were
varied� where a larger set always included a smaller� The same training and test
sets were used for all three techniques� Each experiment was iterated �� times
and the mean accuracy on the test examples is presented below�

In Figure �� the results from the odd number domain are presented� In this
domain� the deterministic version of MERLIN ��� clearly outperforms the two
other techniques� which produce overly general hypotheses �the mean number of
clauses produced by Progol is ��� for all training sizes��
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In Figure �� Figure  and Figure �� the results from the a�b�a�� ac�a
 bc�b
and the Turing machine domains are presented� As for the previous domain�
Progol produces overly general hypotheses in all three domains� That Progol
would not perform well in these domains was expected as predicate invention is
necessary for obtaining correct hypotheses� The deterministic version of MER�
LIN ��� outperforms the non�deterministic version in the �rst two of the three
domains� due to that the non�deterministic version in the �rst case produces
overly speci�c hypotheses and in the second case overly general hypotheses� In
the last domain� the deterministic version su�ers from producing overly speci�c
hypotheses�
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� Concluding Remarks

We have presented a novel approach to predicate invention when learning from
positive examples only� the system MERLIN ���� which uses a technique for
inducing Hidden Markov Models to determine when to invent new predicates�
We have also proposed an extension to the induction technique� which makes
the induced Hidden Markov Model deterministic� The system and the extension
has been evaluated empirically� and the usefulness of predicate invention when
learning from positive examples only was demonstrated as well as it was shown
that it can be bene�cial to keep the induced model deterministic�

There are a number of possible directions for future research� One is to ex�
periment with the approach using other techniques for inducing �nite�state au�
tomata from positive examples only �e�g� ����� Another direction is to investigate
extensions to the technique for inducing Hidden Markov Models� including tech�
niques for �nding a good global prior weight� using other search techniques than
Hill�climbing and allowing negative examples� A third direction is to actually



use the parameters which are set by the induction algorithm in order to induce
stochastic logic programs �����
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