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Abstract—Ensemble classifiers are known to generally perform
better than each individual classifier of which they consist.
One approach to classifier fusion is to apply Shafer’s theory
of evidence. While most approaches have adopted Dempster’s
rule of combination, a multitude of combination rules have been
proposed. A number of combination rules as well as two voting
rules are compared when used in conjunction with a specific kind
of ensemble classifier, known as random forests, w.r.t. accuracy,
area under ROC curve and Brier score on 27 datasets. The
empirical evaluation shows that the choice of combination rule
can have a significant impact on the performance for a single
dataset, but in general the evidential combination rules do not
perform better than the voting rules for this particular ensemble
design. Furthermore, among the evidential rules, the associative
ones appear to have better performance than the non-associative.

Keywords: ensemble classifiers, random forests, evidence
theory, Dempster-Shafer theory, combination rules

I. INTRODUCTION

Information fusion researchers have pointed out the poten-
tial benefits of learning predictive models to improve fusion-
based state estimation [1]. Conversely, machine learning (or
data mining) researchers have acknowledged the contribution
of information fusion to the construction of predictive models
[2]. A predictive model (or classifier) is constructed from ex-
amples with known class labels to suggest the most likely class
for novel, i.e., previously unseen, examples. Many different
ways of constructing predictive models have been proposed,
and it is widely acknowledged that there is no single method
that is optimal for all possible problems [3]. Instead, the fact
that individual classifiers generated in different ways or from
different sources are diverse, i.e., have different classification
errors, can be exploited by combining (or fusing) their outputs
to improve the classification performance [4], [5]. There has
been a substantial amount of work in the field of machine
learning on developing different methods to exploit the idea
of learning such ensembles of classifiers, including varying
the training examples given to the learning algorithm or
randomizing the process for generating each classifier [6].

The main focus of previous research on ensembles of clas-
sifiers has been on the generation of the constituent classifiers,
rather than on the way in which they are combined. Similarly
to the learning methods, no single combination rule can be
expected to be optimal for all situations, but instead each rule
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has its individual strengths and weaknesses. Still, it may be
the case that some of the rules are better suited than others
to combine the output of certain types of ensemble classifier.
Most commonly, straightforward fusion approaches, such as
voting, are employed [4], [7]-[10]. However, some authors
have proposed using Shafer’s evidence theory to combine
the ensemble classifiers by expressing their outputs in terms
of mass functions [10]-[14]. Originally, Dempster’s rule was
proposed as the means to combine mass functions [15]. Since
then, many alternative combination rules have been proposed
to counter seemingly deficient properties of Dempster’s rule,
such as Yager, Dubois-Prade, and the modified Dempster’s rule
[16].

To the best of our knowledge, there has been no previous
study that compares various combination rules on large num-
bers of datasets for any type of ensemble classifier. In this
work, we provide some light on this problem by investigating
the use of eight different combination rules on 27 datasets
from the UCI repository [17], for a specific type of ensemble
classifier, random forests [18], which is widely considered to
be among the most powerful predictive methods, see e.g. [19].

In the next section, we give a brief description of ensemble
classifiers (random forests in particular) and discuss how the
output of members of ensembles commonly are combined.
In Section III, we give a brief introduction to evidential
theory and present the combination rules that are compared
in this study. In Section IV, we discuss previous approaches
to evidence based ensemble combination. In Section V, we
describe the experimental setup of the study and present results
from using the evidential combination rules for random forests.
Finally, in Section VI, we present the main conclusions from
this study and point out some directions for future research.

II. ENSEMBLES OF CLASSIFIERS

A. Basic Terminology

A classifier e is a function that maps a vector of attribute
values x (also called example) to classes ¢ € C = {cy,..., ¢}
An ensemble classifier consists of a set of classifiers £ =
{e1,...,en} whose output is dependent on the outputs of
the constituent classifiers. Furthermore, the reliability of a
classifier e is denoted 7. and is in this study an estimate
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of the classification accuracy (or recognition rate), i.e., the
percentage of examples that are correctly classified.

B. Random Forests

The basic strategy that is employed when generating clas-
sification trees from training examples is called recursive par-
titioning, or divide-and-conquer. It works by partitioning the
examples by choosing a set of mutually exclusive conditions
on an independent variable, or attribute, e.g., the variable has
a value less than a particular threshold, or a value greater or
equal to this threshold, and the choice is usually made such
that the error on the dependent variable (or class variable) is
minimized within each group. The process continues recur-
sively with each subgroup until certain conditions are met,
such as that the error cannot be further reduced (e.g., all
examples in a group have the same the same class label). The
resulting classification tree is a graph that contains one node
for each subgroup considered, where the node corresponding
to the initial set of examples is called the root, and for all nodes
there is an edge to each subgroup generated from it, labeled
with the chosen condition for that subgroup. An example is
classified by the tree by following a path from the root to a leaf
node, such that all conditions along the path are fulfilled by
the example. The estimated class probabilities at the reached
leaf node are used to assign the most probable class to the
example.

Classification trees have many attractive features, such as
allowing for human interpretation and hence making it pos-
sible for a decision maker to gain insights into what factors
are important for particular classifications. However, recent
research has shown that significant improvements in predictive
performance can be achieved by generating large sets of
models, i.e., ensembles, which are used to form a collective
vote on the value for the dependent variable [6]. It can be
shown that as long as each single model performs better than
random, and the models make independent errors, the resulting
error can in theory be made arbitrarily small by increasing the
size of the ensemble. However, in practice it is not possible
to completely fulfill these conditions, but several methods
have been proposed that try to approximate independence, and
still maintain sufficient accuracy of each model, including the
introduction of randomness in the process of selecting exam-
ples and attributes when building each individual model. One
popular method of introducing randomness in the selection
of training examples is bootstrap aggregation, or bagging, as
introduced by Breiman [20]. It works by randomly selecting n
examples with replacement from the initial set of n examples,
leading to that some examples are duplicated while others are
excluded. Typically, a large number (at least 10) of such sets
are sampled from which each individual model is generated.
Yet another popular method of introducing randomness when
generating classification trees is to consider only a small subset
of all available attributes at each node when constructing
the tree. When combined with bagging, the resulting models
are referred to as random forests [18], and these are widely
considered to be among the most competitive and robust of

current methods for predictive data mining [19].

C. Classificer Output Combination

Xu et al. [10] suggest that the output of individual clas-
sifiers can be divided into three different levels of infor-
mation content: propositional, relational and confidence.! A
propositional output merely states the classifier’s preferred
class and relational output involves an ordering or ranking
of all classes from the most likely to the least likely. The
propositional and relational outputs are qualitative values in
contrast to the quantitative confidence output which assigns a
numeric value to each class, specifying the degree to which the
classifier believes the class to represent the true class for the
novel example. The confidence output is most general since
it can be transformed into a relational, which, in turn, can be
transformed in a propositional output (i.e., the highest ranked
class). On the confidence level, the output is often treated as
a probability measure.

In the literature, different combination methods have been
presented that apply to different output levels. For instance,
the weighted majority voting method applies to propositional
output and borda count to relational [4]. The preferred class
c* using weighted majority voting method is

¢* = arg max E T¢ Oc. o (D
ceC ’
ecE

where 7, is a reliability weight for classifier e and

L,
66,(} - { O,

Hence, the “combined vote” for a class ¢ is the sum of the
weights of the classifiers that have c as their output.

Since all outputs of the confidence level can be reduced to
the levels of lower information content, combination methods
applicable to the propositional and relational level are also
applicable to the confidence level. Consequently, such methods
can be applied to heterogeneous sets of classifiers by trans-
forming the outputs of different levels to a common level.

if e outputs ¢
otherwise

2

III. EVIDENTIAL THEORY

In 1976, Glenn Shafer published his seminal book entitled
“A Mathematical Theory of Evidence” [15], often referred to
as Evidential theory or Dempster-Shafer theory. The idea in
evidential theory is to build beliefs about the true state of a
process from smaller and distinct pieces of evidence. The set
of possible states is called the frame of discernment and is
denoted by O. The frame of discernment is both mutually
exclusive and exhaustive, i.e., only one state in © can be
the true state and the true state is assumed to be in the set.
Evidences are formulated as mass functions, m : 29 — R,

'Although these levels are well known, the names we have chosen are
unconventional. In the literature, various names are given to these levels.
Propositional output is sometimes called abstract or decision, and the confi-
dence output is sometimes called soft, continuous, measurement or degree of
support.
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satisfying the three axioms:

m(A) >0 3)

m(®) =0 @)
> mA) =1, (5)
ACO

where A C ©. All subsets A C © for which m(A) > 0 are
called focal elements. Once a mass function over the frame
of discernment has been obtained, the belief for a set A C ©
can be calculated in the following way:

Bel(A) = Y m(B) (6)
BCA
Another function frequently used is plausibility [15]:
PI(A)=1-Bel(A)= Y  m(B) (7)
BNA#D

If mass functions are produced by sources that have different
degrees of reliability, e.g., sensors of different quality, it is
possible to account for this by utilizing reliability weights and
discount the sources in the following way:

m(A) =am;(A),VA# O

K2

m(O) =1—a+am(0), 8)

where 0 < o <1 is the reliability weight of source <.

When a number of different distinct pieces of evidence are
available, these can be combined into a single mass function
by applying a combination rule.

A. Evidential Combination Rules

Combination rules specify how two mass functions, say
my and mo, are fused into one combined belief measure
mig = mj @ me (We here let the binary operator ® denote
any rule for mass function combination). Many combination
rules have been suggested (several are presented in [16]), and
below we briefly discuss the ones we use in our study.

To combine multiple mass functions, the combination rule
is applied repeatedly. Most combination rules are associative,
ie., (m; ® ma) ® m3 = m1 ® (M2 ® mg), meaning that the
order in which mass functions are combined does not affect the
final outcome. For non-associative rules, however, that do not
have this algebraic property, the order matters. Hence, unless
a specific order of the classifier outputs can be justified, the
result of using this type of rules is ambiguous. In spite of this,
in our experiments in Section V, we use some non-associative
rules for comparison, but with arbitrary ordering of the mass
functions to combine.

1) Associative Rules: Dempster’s rule was the rule origi-
nally proposed [15]:

mia(X) = > mi(A)yma(B), 9)

VX C 0,X # (), where K is the degree of conflict between
the two mass functions:

K= Z ml(A)mg(B)
A,BCO
ANB=0

The Modified Dempster’s rule (MDS) by Fixsen and Mahler
[16], [21] is derived from random set theory. It is similar to
Dempster’s rule, but has an additional factor 3:

miz(X) =k § Bmi(A)ma(B),
A.BCO
ANB=X

(10)

(1)

VX C ©, X # (), where k is a normalization constant and
q(X)
q(A)q(B)
q(+) is a (ordinary) Bayesian prior common to both classifiers.

The disjunctive rule,

B = (12)

m12(X) = E ml(A) mQ(B),
A,BCO
AUB=X

13)

VX C O, has been suggested to be used when one of the
sources (which one not known) is expected to be incorrect
[16, pp. 391].

2) Non-Associative Rules: The two non-associative rules
we use in our comparison are the Yager and Dubois-Prade
rules [16]. Yager’s rule assigns conflicting mass to the frame
of discernment © (instead of normalizing as in Dempster’s
rule in Eq. 9):

> mi(A)ma(B), VX CO,X #

A,BCO
ANB=X

m1(0)my(0) + K,

m12(X) =

if X=0
(14)
where K is the same conflict as in Eq. 10, and m2(0) = 0.
The Dubois-Prade rule, instead, assigns the conflicting mass
to the union of the non-intersecting focal elements:

> mi(A)yma(B)+
A.BCO
ANB=X

> my(A)ma(B)
A.BCO

ANB=0
AUB=X

VX C © and X # 0, and m2(0) = 0.

mlg(X) =

5)

B. Decision Making

Deciding on a most likely state, given a mass function, is
non-trivial as each state §; € © may be interpreted as an
interval [Bel(6;), Pi(0;)] (rather than an exact number) which
might be overlapping the interval for another state 6; (j # )
and, hence, incomparable. A mass function can, however, be
“transformed” into a probability measure which can be used
for comparison. A common way to construct a probability
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measure from a mass function is the pignistic transform [22]:

B
BetP(0) = Y %d(&,B),
ico 1Bl
where d(0, B) = 1 if § € B (zero otherwise), and BetP(-) is
the resulting probability measure. From Eq. 16, the § which
maximizes BetP can be selected as the most likely state.

(16)

IV. EVIDENCE-BASED ENSEMBLE CLASSIFIERS

Constructing ensemble classifiers can generally be divided
into two parts: generation of classifiers and combination
method design [11, Sec. 2]. Much of the work on ensembles
has focused on the first part, i.e., constructing the ensembles:
considering what classifiers to select (decision trees, artificial
neural networks, etc.), how many and how to train them. As
mentioned, diversity among ensembles is a key issue, but how
diversity is most appropriately measured and achieved is an
ongoing research problem.

The second part is what we focus on in this article. For
mass function combination, there are three issues to consider:
1) how to construct mass functions from the classifiers, 2)
how to combine the mass functions, and 3) decide on an
ensemble output. Let, for the following discussion, the frame
of discernment be the set O = {f.|c € C}, where C' is a
set of classes and 6. represents the hypothesis that a novel
example belongs to class c.

In the literature, there are basically two different proposals
on how to construct mass functions. One is to construct
mass functions from classifier output. In Section II-C, we
presented three different levels of output. Note that the type
of information represented by a mass function is of the most
general level, i.e., confidence. Also, existing classifiers with
confidence output frequently output a probability measure.
Hence, the mass function is typically more expressive than
most classifier outputs, and to utilize this extended expres-
siveness, meta-information about the classification is often
incorporated into the mass functions. One simple way of
utilizing this expressiveness is to discount (Eq. 8) the mass
function with some reliability measure [13, Sec. 4.3.2]. A
similar approach is to assign the reliability or recognition rate
€, to the propositional output class ¢ € C, e.g., m(6.) = €,
and its misclassification rate €5 to the complement of 6., i.e.,
m(—0.) = es [9], [10], where =0, = O¢ \ {6.}. Another
approach [14] uses, instead of recognition rate as reliability,
the difference between the confidence output for a novel
example x and a reference output (learned from some training
examples). A proximity measure is then used to decide the
reliability of the classifier output and this is reflected in the
resulting mass function.

Another approach is to construct mass functions directly in
the classifier. In [23], a similar approach to [14] is adopted, but
instead of utilizing a confidence output from each classifier,
the mass functions are constructed directly from the compar-
ison of an example and reference examples. The reference
examples represent typical attribute values for members of the
corresponding class. The mass function is then constructed by

assigning mass according to a proximity measure between the
novel example and the references.

For the combination of ensemble classifier mass functions,
the most common combination rule in the original Dempster’s
rule, e.g., [10], [23]. Some approaches do have an extended
combination scheme which inspects the mass functions before
combination and to avoid combining conflicting masses [10].

The final issue to consider is that of ensemble output.
Although the mass function is a confidence measure, it rep-
resents confidence intervals (where its endpoints are given by
Eq. 6 and 7) rather than confidence points (as in the case of
probability measures). One approach is to select the class c*
which maximizes Bel(f.) [9]. Another considers both ends
of the confidence interval [10]. Yet another approach is to
transform the mass function to a probability measure using
the pignistic transform in Eq. 16 (that and other decision
approaches for mass functions are presented in [10], [24]).

V. EMPIRICAL EVALUATION
A. Experimental Setting

1) Ensemble Design: In Section IV, we describe different
parts of the ensemble construction procedure. Below, we
present the specific design details of the ensembles that we
use in our experiments.

The ensemble classifiers are constructed using the random
forest technique presented in Section II-B. For each ensem-
ble, 25 trees are constructed. Each tree is generated from a
bootstrap replicate of the training set [20], and at each node
in the tree generation, only a random subset of the available
attributes are considered for partitioning the examples, where
the size of this subset is equal to the square root of the number
of available attributes (as suggested in [18]). The entire set
of training examples is used for determining which class is
the most probable in each leaf. All compared ensembles are
identical except for the combination rule that is used when
classifying novel instances.

In this study, we consider random forests for which each
tree has propositional output (i.e., each tree provides only its
best class for a novel example). From this output, a mass
function m. for each constituent classifier e with output class
proposition 6. is constructed in the following way:

me({oe}) = 1
me<A) = 0, VAQG,A7£{06}

To take into consideration that the different trees have
different reliability in their outputs, we also discount the mass
functions (using Eq. 8) with the reliability value r, i.e., creating
the updated mass function m{. The reliability is estimated by
measuring the accuracy of each tree on training examples that
are out-of-the-bag, i.e., which have not been used to generate
the tree.

The evidential combination rules (see Section III-A) that
are to be compared for random forests are: Dempster (DS),
modified Dempster, the disjunctive rule (Disjunction), Yager,
and Dubois-Prade. The modified Dempster’s rule requires a
specified common prior, and although all classifiers are based

A7)
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on the same (or similar) dataset, it is difficult to specify a
common prior. For our study, we try two different priors:
uniform (MDS-u) and based on relative frequencies of classes
in the training set (MDS).

As a comparison to the evidential-based combination rules,
we use unweighted voting of the output of all trees in the
forest (voting) and voting where each tree’s vote is weighted
by the classifier’s reliability (w. voting).

Finally, we use the pignistic transform (Eq. 16) to generate
the ensemble output.

2) Methodology and data sets: Accuracy (i.e., the per-
centage of correctly classified examples) is by far the most
common criterion for evaluating classifiers. There has, how-
ever, recently been a growing interest in also the ranking
performance, which can be evaluated by measuring the area
under the ROC curve (AUC) [25]. The AUC can be interpreted
as the probability of ranking a true positive example ahead of a
false positive when ordering examples according to decreasing
likelihood of being positive [26]. A third important property
when evaluating classifiers that output class probabilities is the
correctness of the probability estimates. This is of particular
importance in situations where a decision is to be made that is
based not on which class is the most likely for an example, or
the relative likelihood of class membership compared to other
examples, but on the likelihood of a particular class being
the true class for the example. This is required, e.g., when
calculating the expected utility of different alternatives that
depend on the class membership of the example. Different
measures for the correctness of the class probabilities have
been proposed, but the mean squared error of the predicted
class probabilities, referred to as the Brier score [27], is one
of the most commonly employed.

The methods are compared w.r.t. accuracy, AUC and Brier
score using stratified ten-fold cross-validation on 27 data sets
from the UCI Repository [17], where the average scores
obtained for the ten folds are calculated.> The names of the
data sets together with the number of classes are listed in the
first column of Table I.

3) Test hypotheses: There are actually a number of hy-
potheses to be tested. The null hypotheses can be formulated
as that there for each pair of combination rules is no difference
in predictive performance (i.e., as measured by accuracy, AUC
and Brier score) when used in conjunction with the selected
ensemble design.

B. Experimental Results

1) Accuracy: The accuracies obtained for all methods on
the 27 data sets are shown in Table I. The number of wins
and losses for each pair of methods with respect to accuracy is
shown in Table II, where results for which the p-value (double-
sided binomial tail probability) is less than 0.05 are marked
with bold-face. It can be seen that the three best performing
methods w.r.t. accuracy are weighted voting, Dempster and

2The AUC was calculated according to [25], and for data sets with more
than two classes, the total (weighted) AUC is reported.

modified Dempster with uniform prior (MDS-u), which all
perform on the same level (i.e., about equal number of wins
and losses when compared pairwise). These are slightly ahead
of unweighted voting and modified Dempster with prior based
on relative frequencies (MDS), although the number of wins
and losses do not deviate significantly from what can be
expected if the null hypotheses were true. Far behind come
(in decreasing order of performance) Dubois-Prade, Yager
and Disjunction, all significantly outperformed by the other
combination rules.

2) The area under the ROC curve: The AUC values are
shown in Table III and the number of wins and losses for each
pair of methods with respect to AUC is shown in Table IV. In
contrast to when comparing the methods w.r.t. accuracy, there
is a single clear winner when comparing them w.rt. AUC:
weighted voting significantly outperforms all other combina-
tion rules. There is also a clear second-best method: voting,
which again significantly outperforms the inferior methods. Of
the remaining methods, DS significantly outperforms MDS-
u and Disjunction, and is clearly ahead of MDS and Yager.
Interestingly, in contrast to the results for accuracy, MDS is
clearly ahead of MDS-u with respect to AUC.

3) Brier score: The Brier scores are shown in Table V,
and the number of wins and losses for each pair of methods
regarding Brier score is shown in Table VI. The two best
methods are weighted voting and voting, significantly ahead
of the other methods. Again, DS comes in third place.

C. Discussion

One conclusion from the empirical investigation is that
the choice of combination rule indeed can have a significant
impact on the predictive performance of random forests,
independently of whether the performance is measured by
accuracy, AUC or Brier score.

Furthermore, the results show that if accuracy is to be
optimized for this particular ensemble design, three of the
combination rules are equally good candidates: weighted vot-
ing, Dempster and modified Dempster with uniform prior.
If AUC is to be optimized, weighted voting is the rule of
choice, and finally, if Brier score is to be optimized, voting
and weighted voting are the best candidates. If several of these
criteria are to be optimized, weighted voting is the overall
best choice of combination rule. However, it should be noted
that these rankings are based on the general tendency on all
datasets, and for a particular dataset and performance criterion
there are obviously exceptions to these general rules of what
combination rule to choose.

The experiment also clearly demonstrates the benefit of hav-
ing estimates of each classifier’s performance (i.e., accuracy
on out-of-the-bag examples in our case) in addition to the
vote. However, the experiment also demonstrates that for our
ensemble design, it is hard for the evidence-based methods
to utilize this information more effectively than what is done
by the straightforward weighted voting method. Hence, the
general conclusion from this study is that for the selected
design of ensembles and mass functions, the expressiveness
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Table T

ACCURACY FOR THE EIGHT COMBINATION RULES

[ Data set [ voting [ w. voting [ DS [ MDS-u [ MDS [ Disj. [ Yager [ Dubois-Prade |
balance-scale (3 cl.) 85.13 85.45 | 8545 85.45 | 83.04 | 55.87 83.60 83.84
breast-cancer (2 cl.) 72.73 7273 | 7277 71.95 | 72.41 70.64 72.04 72.04
breast-cancer-wisconsin (2 cl.) 95.85 95.85 96.02 96.34 95.55 81.69 95.54 95.57
car (4 cl.) 96.12 96.18 | 96.18 96.01 | 96.30 | 70.72 94.21 94.73
cleveland-heart-disease (5 cl.) 55.76 55.42 55.42 55.42 55.11 54.12 56.43 57.11
crx (2 cl.) 86.37 86.37 | 86.22 86.22 | 85.79 | 59.79 85.98 85.65
cylinder-bands (2 cl.) 79.26 79.26 | 79.63 79.63 | 80.00 | 4537 75.56 75.56
dermatology (6 cl.) 97.80 97.80 | 98.08 97.80 | 98.36 | 66.07 96.98 96.65
ecoli (8 cl.) 87.18 87.18 | 87.18 87.18 | 86.00 | 67.56 84.22 86.30
glass (6 cl.) 76.45 77.86 | 77.86 77.86 | 76.95 | 40.22 71.41 72.29
hepatitis (2 cl.) 86.42 86.42 85.79 85.79 84.46 53.46 85.17 85.17
house-votes (2 cl.) 96.31 96.31 | 96.31 96.31 | 9632 | 83.24 96.09 96.09
image-segmentation (7 cl.) 91.90 92.86 | 92.86 92.86 | 92.06 | 58.57 86.19 88.57
ionosphere (2 cl.) 93.75 93.75 | 93.25 9375 | 93.75 | 65.54 92.31 92.31
iris (3 cl.) 94.67 94.67 | 95.33 9533 | 95.33 | 90.67 96.67 96.67
kr-vs-kp (2 cl.) 98.62 98.62 | 98.44 98.65 | 98.54 | 70.79 97.43 97.36
lung-cancer (3 cl.) 41.67 46.67 | 50.00 50.00 | 50.00 | 28.33 50.00 41.67
lymphography (4 cl.) 85.14 85.14 | 85.14 85.14 | 85.81 56.90 80.43 80.48
new-thyroid (3 cl.) 95.37 95.37 | 94.91 9491 | 9491 83.70 94.42 94.42
pima-indians-diabetes (2 cl.) 76.68 76.68 76.40 76.68 75.78 65.10 7291 71.92
post-operative-patients (3 cl.) 70.00 68.89 | 68.89 69.14 | 69.14 | 71.11 68.89 68.89
promoters (2 cl.) 80.18 80.18 | 80.27 80.18 | 80.18 | 50.57 68.18 68.18
spectf (2 cl.) 90.27 90.27 | 90.27 90.27 | 89.69 | 42.14 87.39 86.95
tae (3 cl.) 54.25 54.25 | 54.25 5425 | 54.25 | 32.50 49.67 49.67
tic-tac-toe (2 cl.) 97.18 97.18 | 97.08 97.18 | 96.35 | 48.09 90.81 90.81
wine (3 cl.) 97.71 97.71 97.16 97.71 97.71 | 64.02 95.49 96.22
yeast (10 cl.) 60.92 60.98 | 60.98 60.98 | 60.99 | 38.07 57.41 59.23

Table IT
PAIRWISE ACCURACY COMPARISON (ROW WINS/COLUMN WINS)
voting | w. voting DS | MDS-u MDS | Dis;j. Yager | Dubois-Prade
voting - 2/6 | 10/12 7/9 | 13/11 26/1 24/3 24/3
Ww. voting 6/2 - 8/7 5/6 | 14/10 | 26/1 23/4 24/3
DS 12/10 7/8 - 4/7 | 14/10 | 26/1 23/3 24/3
MDS-u 9/7 6/5 /4 - 13/8 26/1 23/3 24/3
MDS 11/13 10/14 10/14 8/13 - 26/1 21/5 21/6
Dis;j. 1/26 1/26 1/26 1/26 1/26 - 1/26 1/26
Yager 3/24 4/23 3/23 3/23 521 26/1 - 6/11
Dubois-Prade 3/24 3/24 3/24 3/24 6/21 26/1 11/6 -
Table III

AUC FOR THE EIGHT COMBINATION RULES

[ Data set [ voting [ w.voting [ DS [ MDS-u [ MDS | Disj. [ Yager | Dubois-Prade |
balance-scale (3 cl.) 94.49 94.55 | 94.25 92.78 | 92.85 | 83.69 82.88 93.40
breast-cancer (2 cl.) 68.18 68.32 65.10 49.03 65.24 58.89 65.89 65.89
breast-cancer-wisconsin (2 cl.) 98.72 98.73 87.35 87.13 86.63 96.03 86.22 98.34
car (4 cl.) 99.77 99.77 | 99.15 97.75 | 98.46 | 91.55 96.54 99.43
cleveland-heart-disease (5 cl.) 80.32 80.51 80.35 77.14 | 77.19 | 72.56 78.38 78.31
crx (2 cl.) 92.86 9295 | 91.73 91.20 | 90.83 | 73.49 81.05 91.72
cylinder-bands (2 cl.) 87.87 87.76 | 87.38 87.06 | 87.12 | 55.42 81.24 81.24
dermatology (6 cl.) 99.91 99.91 99.65 99.47 | 99.47 | 95.67 99.54 92.04
ecoli (8 cl.) 96.28 96.39 | 94.80 92.87 | 93.46 | 92.72 94.45 95.53
glass (6 cl.) 91.48 91.51 88.98 87.18 | 89.23 | 76.37 87.33 89.94
hepatitis (2 cl.) 87.81 87.66 | 81.60 77.63 | 79.95 | 68.14 80.75 80.75
house-votes (2 cl.) 98.95 98.95 | 97.31 97.33 | 96.97 | 96.06 98.16 98.16
image-segmentation (7 cl.) 98.72 98.72 | 98.36 96.46 | 90.86 | 92.92 97.00 98.10
ionosphere (2 cl.) 98.21 98.30 | 78.19 95.11 | 95.16 | 80.20 96.56 96.56
iris (3 cl.) 99.10 99.10 | 97.80 96.93 | 96.93 | 98.70 98.47 98.47
kr-vs-kp (2 cl.) 99.87 99.88 | 86.22 99.38 | 90.87 | 74.78 99.53 95.69
lung-cancer (3 cl.) 71.25 7542 | 71.25 69.58 | 72.08 | 53.33 65.83 63.33
lymphography (4 cl.) 92.39 92.59 | 89.40 86.23 | 89.38 | 70.43 88.73 89.43
new-thyroid (3 cl.) 99.55 99.51 97.40 96.08 | 96.68 | 93.66 98.07 98.33
pima-indians-diabetes (2 cl.) 82.29 82.32 | 71.70 79.65 | 80.45 | 60.71 78.42 70.20
post-operative-patients (3 cl.) 51.94 49.88 | 48.38 4590 | 47.34 | 51.27 52.23 52.19
promoters (2 cl.) 89.17 89.93 | 90.60 90.57 | 90.40 | 45.00 77.13 77.13
spectf (2 cl.) 95.70 95.82 | 94.95 9475 | 95.29 | 60.23 92.29 81.27
tae (3 cl.) 72.29 72.01 71.44 71.73 | 71.67 | 59.44 67.15 69.72
tic-tac-toe (2 cl.) 99.35 99.36 | 98.87 98.93 | 98.85 | 61.37 96.16 96.16
wine (3 cl.) 99.87 99.90 | 99.15 98.77 | 98.77 | 89.61 99.53 90.20
yeast (10 cl.) 83.13 83.08 | 81.83 79.26 | 80.60 | 73.43 79.12 81.74
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Table IV
PAIRWISE AUC COMPARISON (ROW WINS/COLUMN WINS)

voting | w. voting DS | MDS-u MDS | Dis;j. Yager | Dubois-Prade
voting - 6/17 25/2 26/1 252 | 27/0 26/1 26/1
w. voting 17/6 - 26/1 26/1 26/1 26/1 26/1 26/1
DS 2/25 1/26 - 21/6 19/8 23/4 18/9 15/12
MDS-u 1/26 1/26 6/21 - 8/16 | 23/4 12/15 10/17
MDS 2/25 1/26 8/19 16/8 - 23/4 14/13 9/18
Disj. 0/27 1/26 4/23 4/23 4/23 - 3/24 2/25
Yager 1/26 1/26 9/18 15/12 | 13/14 | 24/3 - 8/11
Dubois-Prade 1/26 1/26 | 12/15 17/10 18/9 25/2 11/8 -

Table V

BRIER SCORE FOR THE EIGHT COMBINATION RULES

[ Data set [ voting [ w. voting [ DS [ MDS-u [ MDS [ Disj. [ Yager [ Dubois-Prade |
balance-scale (3 cl.) 0.218 0.218 | 0.277 0.284 | 0.333 | 0.661 0.280 0.274
breast-cancer (2 cl.) 0.416 0.416 | 0.508 0.509 | 0.543 | 0.500 0.476 0.476
breast-cancer-wisconsin (2 cl.) 0.063 0.063 | 0.076 0.077 | 0.085 0.315 0.088 0.094
car (4 cl.) 0.068 0.068 | 0.074 0.075 | 0.072 | 0.621 0.121 0.103
cleveland-heart-disease (5 cl.) 0.537 0.537 | 0.815 0.852 | 0.852 | 0.800 0.600 0.638
crx (2 cl.) 0.195 0.195 | 0.267 0.270 | 0.271 | 0.496 0.235 0.243
cylinder-bands (2 cl.) 0.288 0.288 | 0.377 0.385 | 0.382 | 0.500 0.371 0.371
dermatology (6 cl.) 0.049 0.049 | 0.038 0.041 | 0.033 | 0.715 0.096 0.071
ecoli (8 cl.) 0.218 0218 | 0.248 0.250 | 0.261 | 0.865 0.288 0.264
glass (6 cl.) 0.361 0.362 | 0.431 0.438 | 0.444 | 0.833 0.436 0.426
hepatitis (2 cl.) 0.209 0.210 | 0.272 0.272 | 0.300 | 0.497 0.299 0.299
house-votes (2 cl.) 0.061 0.061 | 0.072 0.072 | 0.073 | 0.346 0.097 0.097
image-segmentation (7 cl.) 0.142 0.142 | 0.141 0.139 | 0.144 | 0.843 0.256 0.216
ionosphere (2 cl.) 0.098 0.097 | 0.128 0.120 | 0.121 | 0.481 0.129 0.129
iris (3 cl.) 0.069 0.069 | 0.093 0.093 | 0.093 | 0.415 0.068 0.059
kr-vs-kp (2 cl.) 0.034 0.034 | 0.027 0.027 | 0.028 | 0.413 0.056 0.055
lung-cancer (3 cl.) 0.625 0.624 | 0.946 0.996 | 0.990 | 0.667 0.672 0.705
lymphography (4 cl.) 0.244 0.243 | 0.297 0.297 | 0.276 | 0.747 0.349 0.345
new-thyroid (3 cl.) 0.071 0.071 | 0.102 0.102 | 0.096 | 0.534 0.089 0.082
pima-indians-diabetes (2 cl.) 0.331 0.331 | 0.438 0.457 | 0.462 | 0.500 0.435 0.448
post-operative-patients (3 cl.) 0.530 0.531 0.610 0.606 | 0.623 | 0.667 0.573 0.571
promoters (2 cl.) 0.306 0.302 | 0.354 0.368 | 0.368 | 0.500 0.446 0.446
spectf (2 cl.) 0.148 0.148 | 0.181 0.185 | 0.201 | 0.499 0.213 0.218
tae (3 cl.) 0.637 0.636 | 0.862 0.888 | 0.890 | 0.667 0.722 0.749
tic-tac-toe (2 cl.) 0.096 0.095 | 0.054 0.054 | 0.067 | 0.495 0.168 0.168
wine (3 cl.) 0.059 0.059 | 0.048 0.045 | 0.045 | 0.614 0.094 0.076
yeast (10 cl.) 0.541 0.542 | 0.731 0.764 | 0.757 | 0.900 0.641 0.634

Table VI
PAIRWISE BRIER SCORE COMPARISON (ROW WINS/COLUMN WINS)

voting | w. voting DS | MDS-u MDS | Disj. Yager | Dubois-Prade
voting - 12/15 22/5 22/5 23/4 | 27/0 26/1 26/1
w. voting 15/12 - 22/5 22/5 23/4 | 27/0 26/1 26/1
DS 5/22 5/22 - 21/6 21/6 | 23/4 16/11 15/12
MDS-u 5/22 5/22 6/21 - 17/9 | 23/4 14/13 14/13
MDS 4/23 4/23 6/21 9/17 - | 23/4 13/14 13/14
Dis;j. 0/27 0/27 4/23 4/23 4/23 - 2/25 2/25
Yager 1/26 1/26 | 11/16 13/14 | 14/13 | 25/2 - 7/13
Dubois-Prade 1/26 1/26 | 12/15 13/14 | 14/13 | 25/2 13/7 -

of evidence theory has no advantage compared to the simple
weighted voting approach.

In a comparison between the evidential combination rules,
the disjunctive rule stands out as poor. This result should
perhaps not be surprising as the rule is very cautious and
avoids conflicts by making the resulting mass function increase
its represented uncertainty (i.e., it is in a sense striving for
a uniform pignistic probability output). For random forest
classifiers, which are constructed from the same examples,
the classifiers can be expected to be similar, which violates
the justification for the disjunctive rule (i.e., that at least one
of the sources is known to be incorrect).

Compared to the original Dempster’s rule, the more recently

introduced non-associative rules have, in general, worse per-
formance (for accuracy and AUC) in our study. Hence, our
results do not motivate the use of these rules for our ensemble
design. It should be reiterated, however, that the order in which
mass functions are combined for non-associative rules affects
the performance. In our case, using 25 classifiers means that
there are 25! possible ways to combine the classifier outputs.
Hence, it would be interesting to more carefully consider the
order in which the classifiers are combined.

VI. CONCLUDING REMARKS

We have compared six different evidential combination rules
to each other and to two common ensemble rules (voting

559



and weighted voting) for a specific ensemble design involving
fusion of propositional output of random forest classification
trees. The combination rules have been evaluated w.r.t. accu-
racy, area under ROC curve and Brier score using ten-fold
cross-validation on 27 datasets from the UCI repository. The
evaluation shows that weighted voting, Dempster and modified
Dempster with uniform prior result in the most accurate pre-
dictions, while weighted voting significantly outperforms all
other methods w.r.t. AUC and Brier score, except (unweighted)
voting, which performs almost as good w.r.t. Brier score. For
any particular dataset, though, the experiment demonstrates
that it may be worthwhile to consider evaluating multiple
combination rules.

In the current study, we have focused on one specific type
of classifier, i.e., random forests, in which a single class
is output for each tree. One direction for future research
is to consider random forests in which each tree outputs a
probability measure, e.g. as considered in [28]. One specific
issue that needs to be considered in such a study is whether
or not accuracy is a suitable criterion to use for discounting in
that case, since the accuracy does not reflect the correctness
of the probability estimates, in contrast to, e.g., the Brier
score. Note also that successful applications of evidential
combination rules (in comparison to others) have been reported
for classifiers which have the ability to abstain from classifying
some examples [8], [10] .

The design of the mass function is of course also important.
In this study, we construct mass functions from propositional
output and meta-information (i.e., reliability values). A natural
approach to exploit the potential of the mass function is
to construct mass functions directly in the classifiers as in,
e.g., [23]. Another fascinating approach (described in [13,
Sec. 4.5]) is to build meta-combiners which combine the
outputs from several different combination rules.

An additional direction for future research is to empirically
compare the combination rules for other types of classifiers.
In principle, a similar experiment as the one presented in this
study could instead have considered ensembles in which each
classifier is built from data from a specific sensor that captures
the specific sensor properties and environmental context.
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