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Abstract

For both single probability estimation trees (PETs) and
ensembles of such trees, commonly employed class proba-
bility estimates correct the observed relative class frequen-
cies in each leaf to avoid anomalies caused by small sam-
ple sizes. The effect of such corrections in random forests
of PETs is investigated, and the use of the relative class
frequency is compared to using two corrected estimates,
the Laplace estimate and the m-estimate. An experiment
with 34 datasets from the UCI repository shows that es-
timating class probabilities using relative class frequency
clearly outperforms both using the Laplace estimate and the
m-estimate with respect to accuracy, area under the ROC
curve (AUC) and Brier score. Hence, in contrast to what
is commonly employed for PETs and ensembles of PETs,
these results strongly suggest that a non-corrected proba-
bility estimate should be used in random forests of PETs.
The experiment further shows that learning random forests
of PETs using relative class frequency significantly outper-
forms learning random forests of classification trees (i.e.,
trees for which only an unweighted vote on the most prob-
able class is counted) with respect to both accuracy and
AUC, but that the latter is clearly ahead of the former with
respect to Brier score.

1. Introduction

Probability estimation trees (PETs) [15] are classifica-
tion trees [6, 16] that have a class probability distribution
at each leaf instead of only a single class label. Like clas-
sification trees, the PETs can be used for classifying exam-
ples, and this is simply done by assigning the most probable
class according to the PET. They can also be used for rank-
ing examples, and this is done by ordering the examples
according to their likelihood of belonging to some particu-
lar class as estimated by the PET. In fact, PETs are more
suited than classification trees to the latter task due to their

ability to give different ranks even to examples that are as-
signed the same class. The former ability can be evaluated
by measuring the accuracy (i.e., the percentage of correctly
classified examples), which is by far the most common cri-
terion for evaluating classifiers. There has however recently
been a growing interest in also the latter ability, which can
be evaluated by measuring the area under the ROC curve
(AUC) [10]. The AUC can be interpreted as the probability
of ranking a true positive example ahead of a false posi-
tive when ordering examples according to decreasing like-
lihood of being positive [3]. One reason for choosing to
compare models with respect to AUC instead of accuracy
is that the former is not sensitive to differences between the
class distribution of the training examples and of the ex-
amples on which the model is applied [3, 9]. This means
that when using AUC instead of accuracy for comparing
models, one is less likely being mislead when choosing a
model due to having evaluated the model on a skewed sam-
ple. Yet another measure for evaluating PETs is the mean
squared error of the assigned class probabilities, a measure
also known as the Brier score [7]. It can be considered to
give an estimate of how reliable the assigned class proba-
bilities are, something which can be of major importance in
many applications. It should be noted that these measures
are not completely correlated, and a model that is less accu-
rate than another, may very well result in a higher AUC or
Brier score (and vice versa).

In this work, we consider ensembles of PETs which,
similarly to ensembles of ordinary classification trees, have
been shown to consistently outperform single trees [15].
One finding that is common for both ensembles of classi-
fication trees and ensembles of PETs is that pruning has a
detrimental effect [1]. This can be explained by that the
ensemble in fact exploits the variance (or diversity) of the
individual models, something which is reduced by pruning.
One consequence of not employing pruning in a PET is that
the resulting class probability distributions often have to be
formed from very few training examples, sometimes even
a single example. In such cases, the use of the relative



class frequency as a probability estimate may lead to ob-
vious anomalies. For example, an example that falls into
a leaf node for which only a single example has been used
to estimate class probabilities will obtain the highest possi-
ble probability for one of the classes, and it will be ranked
ahead of any other example that falls into a leaf for which
at least two differently labeled examples have been used to
estimate class probabilities, independently of the number of
examples and how the classes are distributed among them
(e.g., an example that falls into a leaf for which there are
99 positive and 1 negative example will be ranked as less
likely positive compared to an example that falls into a leaf
for which there is a single positive example only). A com-
monly proposed remedy to this problem is to use some cor-
rection, such as the Laplace correction or the m-estimate
[15, 12, 13], that pushes class probability distributions that
are inferred from few observations towards what can be a
priori expected. In a way, such a correction tries to reduce
error due to variance by introducing a bias. However, al-
though the use of corrected probabilities has been demon-
strated to be beneficial for single PETs, as has the use of en-
sembles for PETs, the use of corrected probability estimates
in conjunction with ensembles of PETs has, according to the
best of our knowledge, not been compared to ensembles of
PETs without such corrections. Still, corrected probability
estimates have been widely adopted also for ensembles of
PETs [15, 13, 14]. This study aims to bring some light on
whether corrected probability estimates indeed are benefi-
cial for random forests of PETs.

In the next section, we recapitulate the most commonly
used probability estimates, which are to be investigated in
conjunction with random forests. In Section 3, we describe
the experimental setup for this study, present results from
comparing the probability estimates with regard to accu-
racy, AUC and Brier score, and provide some explanations
for the observed differences in performance. Finally, we
give some concluding remarks and outline future work in
Section 4.

2. Probability Estimates

In this section, we present four different ways of estimat-
ing class probabilities in an ensemble of PETs: one averag-
ing the votes of the members of the ensemble, where each
member contributes with an unweighted vote for a single
class (hence acting as a classification tree), and the remain-
ing three averaging class probability distributions estimated
by the relative class frequency, the Laplace estimate and the
m-estimate respectively.

2.1. Average Vote

The average vote defines a class probability distribution
by averaging the unweighted class votes by the members of
the ensemble, where each member vote for a single (most
probable) class. It should be noted that the actual class
probability distributions of the members are not used other
than for choosing the most probable class. This means that
the average vote for ensembles of PETs gives the same
result as for ensembles of classification trees for which the
class probability distributions have been replaced by the
most probable class. The average vote (AV) can be defined
as:

AV ({t1, . . . , tN}, e, k) =
∑N

i=1 1(maxk′{ti(e, k′)} = k)
N

where t1, . . . , tN are the members (PETs) of the ensemble,
e is the example to be classified, k is a class label, and where
each ti(e, k′) returns the estimated probability of e belong-
ing to class k′ according to ti. The function 1(s) returns 1
if s is true, and 0 otherwise.

2.2. Relative Class Frequency

The relative class frequency defines a class probability
distribution by averaging the relative class frequencies of
the members of the ensemble. The relative class frequency
(RF) can be defined as:

RF ({t1, . . . , tN}, e, k) =
∑N

i=1 rf(ti, e, k)
N

where again t1, . . . , tN are the members of the ensemble, e
is the example to be classified, k is a class label, and where
rf(ti, e, k) is the relative class frequency of k in the leaf
node into which e falls:

rf(t, e, k) =
l(t, e, k)∑K

j=1 l(t, e, kj)

where l(t, e, k) gives the number of estimation examples
(i.e., the set of examples that is used for estimating prob-
abilities) belonging to class k that falls into the same leaf
as example e in t. It should be noted that there are several
strategies for selecting estimation examples. In the case of
generating only a single tree, the estimation examples are
most commonly chosen to be separate from the set of ex-
amples that is used to grow the tree. On the other hand,
for bagged trees [4] and random forests [5], this set is com-
monly chosen to be the same as the original training set
(although the alternative of using the out-of-bag examples
has also been explored, but with less success [14]). In this



work, we have adopted the common strategy of choosing
the estimation examples to be identical to the original set of
training examples.

2.3. Laplace estimate

The Laplace estimate defines a class probability dis-
tribution by averaging probability estimates that adjust
the relative frequencies by adding one to the number of
observed estimation examples for each class in each leaf.
The Laplace estimate (LP) can be defined as:

LP ({t1, . . . , tN}, e, k) =
∑N

i=1 lp(ti, e, k)
N

where again t1, . . . , tN are the members of the ensemble,
e is the example to be classified, k is a class label, and
where lp(ti, e, k) gives the Laplace corrected probability of
e belonging to class k according to ti:

lp(t, e, k) =
1 + l(t, e, k)

K +
∑K

j=1 l(t, e, kj)

where l(t, e, k) again gives the number of estimation ex-
amples belonging to class k that falls into the same leaf as
example e in t, and where K is the number of classes.

2.4. The m-estimate

The m-estimate defines a class probability distribution
by averaging probability estimates that adjust the relative
frequencies by adding to each leaf m estimation examples
distributed according to the a priori class probability
distribution, where m is a parameter of the estimate. The
m-estimate (M=m) can be defined as:

Mm({t1, . . . , tN}, e, k) =
∑N

i=1 pm(ti, e, k)
N

where t1, . . . , tN are the members of the ensemble, e is
the example to be classified, k is a class label, and where
pm(ti, e, k) is the corrected probability of e belonging to
class k according to ti:

pm(t, e, k) =
m× Pk + l(t, e, k)

m +
∑K

j=1 l(t, e, kj)

where l(t, e, k) again gives the number of estimation ex-
amples belonging to class k that falls into the same leaf as
example e in t, and Pk is the a priori probability for class k.
The latter is typically estimated using all available training
examples, an approach which is also adopted in this study.

3. Empirical Analysis

3.1. Experimental Setting

3.1.1 Methods

The probability estimates that are to be compared for ran-
dom forests [5] are: average vote (AV), relative class fre-
quency (RF), the Laplace estimate (LP) and the m-estimate
(M=m). We have explored three settings for the latter:
m = 1, m = 2 and m = K (no. of classes). It should be
noted that for the last two settings, the m-estimate coincides
with the Laplace estimate in case all classes are distributed
equally, and that the second and third setting coincide for
binary classification tasks. AV assumes each member votes
for the most frequent class in the estimation set of the cor-
responding leaf (i.e., this corresponds to choosing the most
probable class according to relative frequency or Laplace).

All probability estimates are used in conjunction with
random forests consisting of 50 trees. Each tree is gener-
ated from a bootstrap replicate of the training set [4], and
at each node in the tree generation, only a random subset
of the available attributes are considered for partitioning the
examples, where the size of this subset is set to be equal
to the square root of the number of available attributes (as
suggested in [5]). The entire set of training examples is
used as estimation examples, as discussed in Section 2.2.
All compared ensembles are identical except for the class
probability estimates that are used when classifying novel
instances.

3.1.2 Methodology and data sets

The methods are compared w.r.t. accuracy, AUC and Brier
score using stratified ten-fold cross-validation on 34 data
sets from the UCI Repository [2]. The names of the data
sets together with the number of classes are listed in Table 2.
The AUC was calculated for each method on all examples
according to [11]. For data sets with more than two classes,
the total AUC was calculated [10].1

3.1.3 Test hypotheses

There are actually a number of hypotheses to be tested.
The null hypotheses can be formulated as there is no dif-
ference in predictive performance (i.e, as measured by ac-
curacy, AUC and Brier score) between random forests of
PETs using relative frequency, the Laplace estimate and the
m-estimate, and random forests of classification trees.

1For two-class problems, the total AUC is equivalent to AUC.



3.2. Experimental Results

3.2.1 Accuracy

The number of wins and losses for each pair of methods
with respect to accuracy is shown in Table 1(a), where re-
sults for which the p-value (double-sided binomial tail prob-
ability) is less than 0.05 are marked with bold-face. The ac-
tual accuracies obtained for all methods on the 34 data sets
are shown in Table 2.

Random forests of PETs using relative frequency turns
out to be a clear winner, with a won/loss ratio against both
average vote and Laplace significantly deviating from the
expected if the null hypotheses were true (the p-values for
obtaining these ratios if the null hypotheses hold are 2.49×
10−03 and 3.47 × 10−02 respectively). Relative frequency
is also clearly ahead of the best setting for m (although the
p-value of 0.12 is not below the significance threshold).

3.2.2 The area under the ROC curve

The number of wins and losses for each pair of methods
with respect to AUC is shown in Table 1(b), with the actual
AUC values shown in Table 2.

Again, random forests of PETs using relative frequency
is a clear winner, although won/loss ratios are only signifi-
cant compared to average vote and the two last settings for
the m-estimate (the p-values for obtaining these ratios are
1.32× 10−03 and 1.35× 10−02 respectively). Relative fre-
quency is also clearly ahead of the best setting for m (p-
value of 0.16) and Laplace (0.30), although these are not
below the chosen significance threshold.

3.2.3 Brier score

The number of wins and losses for each pair of methods
regarding Brier score is shown in Table 1(c), and the actual
scores in Table 3.

The use of relative frequency for random forests of PETs
significantly outperforms random forests of PETs using
Laplace and the m-estimate (for all three settings). The p-
values for obtaining the observed won/loss ratios under the
null hypotheses are 4.07× 10−09 and 6.94× 10−08 respec-
tively, allowing the null hypotheses to be safely rejected.
In contrast to the results for the previous performance mea-
sures, the clear winner is however random forests of classi-
fication trees - significantly outperforming both Laplace and
m-estimate (the p-values are 1.95× 10−04 when compared
to Laplace and 2.94 × 10−03 when compared to the best
value for the m-estimate, i.e., m = 1), and leaving relative
frequency clearly behind (the p-value of 0.12 is however not
significant).

Table 1. Wins and losses (row wins/column
wins).

(a) Accuracy
AV RF LP M=1 M=2 M=K

AV - 5/21 10/16 9/18 13/15 17/12
RF 21/5 - 17/6 18/9 21/6 22/6
LP 16/10 6/17 - 10/14 14/10 17/8
M=1 18/9 9/18 14/10 - 17/6 20/5
M=2 15/13 6/21 10/14 6/17 - 10/3
M=K 12/17 6/22 8/17 5/20 3/10 -

(b) AUC
AV RF LP M=1 M=2 M=K

AV - 7/26 11/22 10/22 10/23 13/20
RF 26/7 - 20/13 21/12 24/9 24/9
LP 22/11 13/20 - 14/19 19/13 24/6
M=1 22/10 12/21 19/14 - 22/10 23/10
M=2 23/10 9/24 13/19 10/22 - 15/3
M=K 20/13 9/24 6/24 10/23 3/15 -

(c) Brier score
AV RF LP M=1 M=2 M=K

AV - 22/12 28/6 26/8 27/7 29/5
RF 12/22 - 33/1 32/2 32/2 32/2
LP 6/28 1/33 - 1/33 14/20 20/12
M=1 8/26 2/32 33/1 - 32/2 32/2
M=2 7/27 2/32 20/14 2/32 - 18/1
M=K 5/29 2/32 12/20 2/32 1/18 -

3.3. Discussion

The use of corrected estimates in PETs has been moti-
vated by the small sample anomaly. However, the experi-
mental study provides strong evidence for that this anomaly
in fact is of minor importance for random forests of PETs
compared to the cost of using the corrected estimates. This
cost obviously comes from the bias that is introduced when
using any of the corrected estimates, in contrast to when us-
ing the relative frequency. Furthermore, the small sample
anomaly may actually not be as harmful for random forests
of PETs as for single PETs and for some of the alternative
ways of generating ensembles of PETs, since the anticipated
problem of having singletons (or very few examples) to es-
timate class probabilities in leaf nodes can be expected to
occur less frequently when using a bootstrap replicate of
the training examples to grow each tree and all examples to
estimate the probabilities, compared to using the same ex-
amples to both grow the trees and estimate the probabilities,
which by necessity will lead to pure (and therefore small)
estimation sets, and compared to using a separate subset of
the examples to estimate the probabilities, which hence will
contain fewer examples for estimation.



Table 2. Accuracy and AUC

Data set
audiology (24 cl.)
balance-scale (3 cl.)
breast-cancer (2 cl.)
breast-cancer-wisconsin (2 cl.)
car (4 cl.)
cleveland-heart-disease (5 cl.)
crx (2 cl.)
cylinder-bands (2 cl.)
dermatology (6 cl.)
ecoli (8 cl.)
glass (6 cl.)
hepatitis (2 cl.)
house-votes (2 cl.)
image-segmentation (7 cl.)
ionosphere (2 cl.)
iris (3 cl.)
kr-vs-kp (2 cl.)
lung-cancer (3 cl.)
lymphography (4 cl.)
mushroom (2 cl.)
new-thyroid (3 cl.)
pima-indians-diabetes (2 cl.)
post-operative-patients (3 cl.)
primary-tumor (21 cl.)
promoters (2 cl.)
sick-euthyroid (2 cl.)
soybean-large (19 cl.)
spambase (2 cl.)
spectf (2 cl.)
splice (3 cl.)
tae (3 cl.)
tic-tac-toe (2 cl.)
wine (3 cl.)
yeast (10 cl.)

Accuracy
AV RF LP M=1 M=2 M=K

69.50 76.00 68.50 71.50 70.50 49.50
86.40 86.24 87.36 87.20 87.36 87.52
73.43 72.73 73.08 73.43 73.43 73.43
96.28 96.42 96.42 96.42 96.42 96.42
96.47 96.99 97.11 97.11 96.93 95.25
56.77 56.77 57.10 57.76 55.12 54.13
86.79 86.50 86.65 86.65 86.65 86.65
79.44 78.15 78.15 77.96 76.30 76.30
98.09 98.09 98.63 98.09 98.09 97.54
87.20 87.80 87.80 87.50 86.90 85.12
78.50 78.97 76.64 77.57 77.10 73.36
85.81 86.45 84.52 85.81 83.23 83.23
96.09 96.55 96.32 96.55 96.32 96.32
92.38 93.33 92.38 93.33 93.33 92.38
94.02 94.02 94.02 94.30 93.73 93.73
94.67 96.00 95.33 95.33 95.33 95.33
98.69 98.87 98.75 98.75 98.69 98.69
46.88 46.88 46.88 50.00 50.00 50.00
83.78 85.14 84.46 83.78 82.43 82.43

100.00 100.00 100.00 100.00 100.00 100.00
93.95 93.95 93.95 93.49 94.88 94.88
76.43 76.82 76.69 76.56 76.82 76.82
70.00 67.78 67.78 70.00 71.11 71.11
46.31 46.90 46.90 47.79 46.31 38.35
80.19 87.74 87.74 87.74 87.74 87.74
97.88 97.91 97.72 97.60 97.44 97.44
90.23 90.23 85.99 88.27 86.32 81.11
94.87 94.96 94.87 94.83 94.74 94.74
90.26 91.12 89.97 89.97 88.83 88.83
96.36 96.49 96.39 96.43 96.46 96.49
52.32 57.62 54.30 56.29 54.30 55.63
97.70 98.33 98.12 98.12 98.12 98.12
98.31 98.31 98.31 98.31 98.31 98.31
62.06 62.13 62.06 61.93 61.99 58.42

AUC
AV RF LP M=1 M=2 M=K

94.67 94.95 94.86 94.57 94.41 93.13
94.75 94.36 95.27 94.67 94.85 94.96
67.44 67.91 68.28 68.07 68.09 68.09
99.17 99.20 99.16 99.17 99.15 99.15
99.77 99.84 99.82 99.82 99.81 99.79
80.41 81.05 81.87 81.42 81.55 81.70
93.03 93.20 93.21 93.19 93.19 93.19
87.54 87.43 86.85 87.06 86.84 86.84
99.92 99.93 99.93 99.93 99.93 99.92
96.85 96.87 97.01 96.94 96.81 96.52
92.82 93.22 92.45 93.01 92.83 92.29
85.30 85.59 85.92 85.95 86.03 86.03
99.27 99.32 99.29 99.31 99.30 99.30
99.10 99.14 99.06 99.11 99.10 99.06
98.23 98.15 97.91 98.00 97.89 97.89
99.04 98.99 99.09 99.03 99.05 99.09
99.86 99.90 99.91 99.91 99.91 99.91
65.54 64.11 64.42 64.07 64.09 64.09
92.95 93.44 93.33 93.41 93.40 93.20

100.00 100.00 100.00 100.00 100.00 100.00
99.35 99.31 99.33 99.31 99.33 99.32
82.45 82.79 83.07 82.94 83.05 83.05
47.15 37.63 36.56 36.02 35.14 34.90
79.93 82.63 83.13 82.19 82.14 81.49
93.54 95.69 95.44 95.55 95.41 95.41
97.61 98.28 98.39 98.30 98.30 98.30
98.95 99.07 99.06 99.07 99.06 98.97
98.34 98.60 98.53 98.56 98.53 98.53
96.34 96.51 96.07 96.17 95.97 95.97
99.41 99.42 99.41 99.42 99.42 99.41
72.19 74.56 72.85 73.68 73.17 72.82
99.60 99.65 99.63 99.64 99.63 99.63
99.91 99.91 99.90 99.91 99.91 99.90
83.98 84.73 84.44 84.74 84.70 84.43

4. Concluding Remarks

We have investigated the effect of using corrected prob-
ability estimates in random forests, and we have compared
the use of the (non-corrected) relative class frequency to us-
ing the Laplace estimate and the m-estimate. An experi-
ment with 34 datasets from the UCI repository shows that
estimating class probabilities using the relative class fre-
quency significantly outperforms or is clearly ahead of both
the Laplace estimate and the m-estimate with respect to ac-
curacy, AUC and Brier score. Hence, these results strongly
suggest that a non-corrected probability estimate should be
used in random forests of PETs, in contrast to what previ-
ously has been commonly employed. The experiment fur-
ther shows that learning random forests of PETs using rela-
tive class frequency significantly outperforms learning ran-
dom forests of classification trees with respect to both ac-
curacy and AUC. However, random forests of classification
trees turned out to give clearly better Brier scores compared
to random forests of PETs. One direction for future research
is to investigate the reasons for this phenomenon. Another
direction for future work is to explore calibration methods
(i.e., methods that post-process the probabilities output by
a model) in conjunction with the different probability esti-

mates [8]. The calibration methods typically do not affect
the AUC (since the relative order of examples according to
assigned probabilities is not changed), but can have a major
impact on accuracy and Brier score.
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