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Sweden

Abstract

Decision lists (or ordered rule sets) have two attractive
properties compared to unordered rule sets: they re-
quire a simpler classification procedure and they allow
for a more compact representation. However, it is an
open question what effect these properties have on the
area under the ROC curve (AUC). Two ways of forming
decision lists are considered in this study: by generat-
ing a sequence of rules, with a default rule for one of the
classes, and by imposing an order upon rules that have
been generated for all classes. An empirical investiga-
tion shows that the latter method gives a significantly
higher AUC than the former, demonstrating that the
compactness obtained by using one of the classes as a
default is indeed associated with a cost. Furthermore,
by using all applicable rules rather than the first in an
ordered set, an even further significant improvement in
AUC is obtained, demonstrating that the simple classifi-
cation procedure is also associated with a cost. The ob-
served gains in AUC for unordered rule sets compared to
decision lists can be explained by that learning rules for
all classes as well as combining multiple rules allow for
examples to be ranked according to a more fine-grained
scale compared to when applying rules in a fixed order
and providing a default rule for one of the classes.

1 Introduction

There has recently been a growing interest in using rule
learning methods for maximizing the area under the
ROC curve (AUC) [9, 16, 20]. A major reason for using
AUC as an alternative to accuracy, which so far has
been the most commonly used criterion for comparing
rule learning methods, is that it is not sensitive to
differences between the class distribution within the
training examples and within the examples on which
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the model is applied [4, 22]. This means that by using
AUC instead of accuracy when comparing models, one
is less likely to be mislead when choosing a model due
to having evaluated the model on a skewed sample.
As noted in [4], the AUC can be interpreted as the
probability of ranking a true positive example higher
than a false positive when ordering examples according
to decreasing likelihood of being positive.

In separate-and-conquer rule learning [13], two
types of model have traditionally been considered: de-
cision lists (or ordered rule sets) [23], and (unordered)
rule sets [1, 6]. Rule sets are typically formed by gen-
erating rules for all classes, where the rules are order-
indepedent in the sense that the prediction made by
each rule is not dependent on the applicability of other
rules (see e.g., [3]). Decision lists can be formed from
rule sets by imposing some order on the rules (e.g., by
ordering the rules according to decreasing probability of
the most probable class of each rule). A more common
approach to learning decision lists is to generate rules for
all classes, except one, in some specified order, discard-
ing examples that have been covered by preceding rules
when generating subsequent rules, and by forming a de-
fault rule for the last class in the sequence (see e.g., [7]).
With this approach, the rules become order-dependent
in the sense that the prediction of a rule is based on
the assumption that none of the preceding rules in the
sequence apply.

A decision list has the advantage of requiring only
a simple inference mechanism for classifying examples
(i.e., the first applicable rule is employed), while a rule
set requires some method for combinining predictions
from multiple applicable rules (e.g., using class counts
as in [6] or some more sophisticated scheme as in
[17, 18]). Furthermore, decision lists consisting of
order-dependent rules are normally more compact than
rule sets, due to that one rule suffices for the default
class. For the same reason, decision lists can be more
efficiently generated. However, it is not clear how



decision lists compare to rule sets when it comes to
maximizing AUC. If there is any difference, this could
be explained by the effect of choosing one of the classes
as a default and by the choice of inference mechanism.
The impact of each of these choices has to be clarified
in order to understand the reasons for any difference in
AUC.

In the next section, we analyze the differences be-
tween applying decision lists and rule sets for maximiz-
ing the AUC. In Section 3, we perform an empirical
investigation to study the impact of these differences.
In Section 4, we relate this study to earlier work, and
finally, in Section 5, we give concluding remarks.

2 Methods

2.1 Learning Decision Lists and Rule Sets In-
cremental reduced error pruning (IREP), which was
originally introduced in [15], is a technique that has been
extensively used for efficient separate-and-conquer rule
learning, e.g., [15, 7, 12, 8, 3]. By pruning each rule im-
mediately after its generation and removing examples
covered by the pruned rule, the number of generated
rules is kept relatively small compared to keeping each
rule unpruned and removing the relatively few examples
covered by each, more specific, rule. Since the compu-
tational cost grows as the product of the number of
generated rules and the number of training examples,
IREP normally allows substantially larger training sets
to be handled within a given amount of time compared
to using separate-and-conquer with no pruning.

In Table 1, two variants of incremental reduced
error pruning are shown. The first, called IREP-O,
generates order-dependent rules and is a variant of
the algorithms presented in [15, 7], while the second,
called IREP-U, generates order-independent rules and
is taken from [3]. The main difference between the
algorithms is that the class probabilities assigned to
each rule by the former algorithm are dependent of
previously generated rules, while for the latter algorithm
these are assigned independently of other rules. This
follows from that the prune set is kept constant in
the latter algorithm, allowing each rule to be evaluated
and pruned independently of previously generated rules,
while the former algorithm removes covered examples
from the prune set. Another difference between the
algorithms is that the former generates a default rule
for the last class, while the latter generates rules for all
classes in a similar way.

It should be noted that in the original formulation
of IREP for order-dependent rules [15], only two-class
problems were handled, while this was extended to
multi-class problems in [7]. The algorithm for order-
dependent rules presented here slightly differs from the

Table 1: Rule learning algorithms.

function IREP-O(OrderedClasses,Examples)
Rules := ∅
Make stratified split of Examples into
Grow and Prune
for each Class ∈ OrderedClasses do

if Last(Class, OrderedClasses) then
Rules := Rules ∪ {DefaultRule(Prune)}

else
Pos := {e : e ∈ Grow ∧ Class(e) = Class}
Neg := Grow \ Pos
while Pos 6= ∅ do

Rule := GrowRule(Pos, Neg)
Rule := PruneRule(Rule, Prune)
if not Exclude(Rule, Prune) then

Rules := Rules ∪ {Rule}
Grow :=

Grow \ Covers(Rule, Grow)
Prune :=

Prune \ Covers(Rule, Prune)
else

Grow := Grow \ Covers(Rule, Pos)
Pos := Pos \ Covers(Rule, Pos)

return Rules

function IREP-U(Classes,Examples)
Rules := ∅
Make stratified split of Examples into
Grow and Prune
for each Class ∈ Classes do

Pos :=
{e : e ∈ Grow ∧ Class(e) = Class}

Neg := Grow \ Pos
while Pos 6= ∅ do

Rule := GrowRule(Pos, Neg)
Rule :=

PruneRule(Rule, Prune)
if not Exclude(Rule, Prune)
thenRules := Rules ∪ {Rule}
Pos :=

Pos \ Covers(Rule, Pos)
return Rules

previous in that a prune set is generated initially, from
which examples are removed only if they are covered
by a generated rule that should be kept. In the original
formulation, the remaining examples to be covered were
repeatedly divided into a grow and prune set each time
a new rule was to be generated, and the rule generation
was terminated whenever a rule was found that should
not be included.1

Two problems that need to be addressed when
applying order-independent rules is how to classify
examples that are not covered by any rule and how to
classify examples that are covered by multiple, possibly
conflicting, rules.

We address the first problem by classifying an
uncovered example according to the class distribution

1In [7], an alternative stopping condition was introduced,
allowing the number of bits required to encode the rules and
class labels to grow up to d when adding a rule compared to
the minimum encoding found so far, where d is a user-specified
parameter.
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Figure 1: ROC curves after including rules.
of those examples in the prune set that are not covered
by any rule.2

Two approaches to the latter problem is considered
in this work. The first orders rules according to
decreasing probability of the most probable class of
each rule, and then classifies according to the first
applicable rule, hence forming a decision list of the
order-independent rules. The second approach does not
impose any order on the rules, but combines the class
distributions of all applicable rules using näıve Bayes as
in [3]. For both order-dependent and order-independent
rules, class probability distributions are formed using
the covered examples in the prune set together with
Laplace correction [5].

2.2 Pruning and Exclusion Criteria for Maxi-
mizing AUC A number of criteria for deciding how to
prune generated rules and whether or not to exclude a
generated rule have previously been proposed and eval-
uated with respect to maximizing accuracy [15, 7, 3].

Several commonly employed pruning criteria for
IREP have been shown to be equivalent to maximizing
precision, i.e., the fraction p

p+n , where p and n are
the number of covered positive and negative examples
respectively, and it has been noted that maximizing
precision in fact is equivalent to attempting to maximize
AUC [14].

To see this, assume we start with a default rule
assigning the same probability of being positive to all
examples (i.e., the ROC curve is a straight line from
(0, 0) to (1, 1), where the x- and y-coordinates give the
fraction of covered false and true positives respectively).
This corresponds to the dashed lines in Figure 1.

If we add a rule R that covers p positive and n
negative examples to this classifier, examples covered
by this rule will be given a higher rank than those
classified by the default rule alone. The ROC curve
will now consist of two segments, passing through (0, 0),

(n/N, p/P ) and (1, 1), where N and P are the total
number of negative and positive examples respectively
(see Figure 1a).

In order to maximize AUC, we would like to max-
imize the slope of the first segment3, which is given by
p/P
n/N . Since P and N are constant for all candidate rules,
maximizing the slope of the ROC curve is equivalent to
maximizing precision4.

A commonly employed exclusion criterion when
generating order-dependent rules is p

p+n ≤ 1/2 [15, 7],
which is natural when maximizing accuracy, since an
added rule for the positive class may otherwise be
allowed to make more errors than correct classifications.
However, when maximizing AUC, this criterion may in
fact allow a rule to be added for which the slope of the
corresponding first segment of the ROC curve is less
than one, i.e., the corresponding ROC curve is concave,
since the slope depends on the total number of positive
and negative examples as shown above. For example, a
rule Ri for which p = 2n and P = 3N would be included
using this criterion (since 2/3 > 1/2), but the slope will
only be 2/3 ≤ 1 (see Figure 1b).

Moreover, this criterion may also exclude rules that
result in a slope greater than one. For example, a rule
Re for which n = 2p and N = 3P would be excluded
using this criterion (since 1/3 ≤ 1/2), but the slope will
be 3/2 > 1 (see Figure 1c).

For unordered rule sets, lift (i.e.,
p

p+n
P

P+N

) has been the

2If this set is empty, the distribution is formed using the
original prune set.

3This would not necessarily be optimal if we were allowed to
add one rule only, but this strategy assumes that an arbitrary
number of additional rules may be added.

4Maximizing p
p+n

is equivalent to minimizing p+n
p

= 1 + n/p

which in turn is equivalent to maximizing p/n.



basis for both a pruning and an exclusion criterion [3].
It should be noted that using lift as a pruning criterion is
equivalent to using precision, since P

P+N is constant for
all rules. However, excluding rules with a lift less than
or equal to one turns out to be equivalent to requiring
a convex ROC curve for an included rule (i.e., the slope
of the first segment must be greater than one), since

p
p+n

P
P+N

≤ 1 ⇐⇒ p

p + n
≤ P

P + N
⇐⇒

p(P + N) ≤ P (p + n) ⇐⇒ pN ≤ Pn ⇐⇒
p

P
≤ n

N
⇐⇒

p
P
n
N

≤ 1

2.3 Maximizing AUC with Decision Lists and
Rule Sets Including rules for each class, which is
done when generating order-independent rules, as well
as allowing for combining all applicable rules, can
be advantageous when trying to maximize AUC, as
explained below.

Assume that we are facing a two-class learning task,
where each class requires two rules if defined separately.
Assume further that attached to each rule is a class
probability distribution. The generated sequence of
order-dependent rules would then typically consist of
three rules HO = {R1, R2, R3}, where the two first rules
would assign the same most probable class (positive)
to covered examples, while the last would act as a
default rule, assigning the other class (negative) to any
examples that are not covered by the first two rules.
From a ranking perspective, where we want to order
a set of examples from the most likely positive to the
least likely, the sequence HO allows for partitioning the
examples into three groups, where all examples in a
group are given the same score (i.e., probability of being
positive).5 In particular, all examples that would be
classified as negative are placed in the same group and
could hence not be differentiated.

On the other hand, the generated set of order-
independent rules would typically consist of four rules
HU = {R1, R2, R3, R4}, for which the class distribu-
tions of the two first would give the positive class a
higher probability than the negative and vice versa for
the last two rules. If a single rule is used for classifying
an example, we may now partition all examples in four
groups, and the examples can be differentiated indepen-
dently of the class labels they are given (i.e., examples
classified as negative may now be given different scores).
Furthermore, if class probabilities are formed from all

5There will be fewer possible groups if the same probability
distribution is attached to multiple rules.

applicable rules, rather than a single rule, we have up to
24 possible groups to place an example in. This means
that examples can be ranked according to a much more
fine-grained scale when multiple rules are combined.

3 Empirical Evaluation

3.1 Experimental Setting

3.1.1 Methods The methods that are to be com-
pared are variants of the IREP-O and IREP-U algo-
rithms using two different exclusion criteria for IREP-O

(accuracy and lift respectively) and with and without
post-processing6 for both algorithms. When classify-
ing examples with order-independent rules, we consider
both forming a decision list by ordering the rules ac-
cording to decreasing probability of the most probable
class, and keeping the rule set unordered (using näıve
Bayes to combine classifications from multiple rules).
All methods use precision as a pruning criterion, and
2/3 of the training examples are used for growing rules,
while 1/3 are used for pruning. All methods are given
the same grow and prune sets. The employed methods
are summarized in Table 2.

Table 2: Employed Methods
Acronym Output Algorithm Excl. crit. Post-Processing
DL/O decision list IREP-O accuracy no
DL/OP decision list IREP-O accuracy yes
DL/OL decision list IREP-O lift no
DL/OLP decision list IREP-O lift yes
DL/U decision list IREP-U lift no
DL/UP decision list IREP-U lift yes
RS rule set IREP-U lift no
RS/P rule set IREP-U lift yes

3.1.2 Methodology and data sets We have chosen
to compare the methods w.r.t. AUC using ten-fold cross-
validation on 34 data sets from the UCI Repository [2].
The names of the data sets together with the number of
classes are listed in Table 3. The AUC was calculated
for each method on all examples according to [10] and all
methods were given exactly the same training and test

6It has been observed that significant gains in accuracy can
be obtained by post-processing rules generated by IREP through
considering replacements of each rule with more general or spe-
cific versions followed by eliminating rules that increase the total
description length [7]. A similar procedure may be used also for
maximizing AUC. In this work, we consider a simplified proce-
dure, in which each rule is either kept or completely eliminated
(i.e., replacement rules are not considered), and instead of mini-
mizing the description length, rules that do not contribute posi-
tively to the AUC (as estimated on the prune set) are removed.



Table 3: AUC for all 8 methods on the 34 data sets.

Data set DL/O DL/OP DL/OL DL/OLP DL/U DL/UP RS RS/P
audiology (24 cl.) 81.37 81.46 83.59 84.36 82.01 80.85 80.82 81.24
balance-scale (3 cl.) 80.19 80.41 78.44 79.77 91.82 92.67 95.83 95.74
breast-cancer (2 cl.) 59.17 59.17 61.22 61.97 66.32 66.58 66.58 65.85
breast-cancer-wisconsin (2 cl.) 95.31 95.07 96.42 96.40 97.20 97.42 99.13 98.76
car (4 cl.) 84.99 85.12 93.27 94.49 97.95 97.98 97.93 98.11
cleveland-heart-disease (5 cl.) 53.06 53.06 68.33 67.71 66.56 65.85 65.50 65.93
crx (2 cl.) 85.70 86.64 85.76 87.39 88.29 88.33 89.95 89.41
cylinder-bands (2 cl.) 73.97 74.17 71.49 70.61 71.46 72.58 72.97 72.94
dermatology (6 cl.) 88.64 88.53 94.88 94.31 96.32 96.26 97.40 97.27
ecoli (8 cl.) 88.12 88.04 92.26 92.27 92.04 92.28 87.83 93.09
glass (6 cl.) 66.80 66.34 67.83 69.25 70.67 69.97 72.25 72.79
hepatitis (2 cl.) 65.98 66.35 73.34 73.42 72.65 71.74 82.96 82.00
house-votes (2 cl.) 97.38 97.61 97.49 97.75 95.47 94.74 97.91 97.19
image-segmentation (7 cl.) 88.32 88.06 89.82 89.85 90.90 89.89 92.11 91.26
ionosphere (2 cl.) 91.80 91.86 91.93 91.92 93.05 92.25 95.11 93.00
iris (3 cl.) 94.75 95.60 95.00 95.87 96.96 96.64 97.91 98.12
kr-vs-kp (2 cl.) 95.92 96.11 97.03 97.25 99.48 99.50 99.54 99.67
lung-cancer (3 cl.) 71.25 71.25 72.68 73.63 69.67 64.94 70.71 70.28
lymphography (4 cl.) 71.82 70.37 75.55 74.35 81.89 82.80 76.32 80.14
mushroom (2 cl.) 99.80 99.80 99.80 99.80 99.96 99.96 99.99 99.98
new-thyroid (3 cl.) 86.98 87.17 90.44 90.55 87.45 85.16 96.43 96.50
pima-indians-diabetes (2 cl.) 65.27 65.27 69.48 69.24 74.83 74.34 76.90 76.66
post-operative-patients (3 cl.) 50.00 50.00 47.83 43.08 40.26 39.73 40.67 39.46
primary-tumor (21 cl.) 57.10 57.19 69.86 70.72 72.10 72.40 67.41 71.32
promoters (2 cl.) 71.64 68.64 72.37 70.10 77.39 77.18 80.78 78.44
sick-euthyroid (2 cl.) 81.75 81.46 90.57 91.11 96.06 96.08 95.67 95.63
soybean-large (19 cl.) 92.45 92.36 92.51 91.96 89.63 89.51 92.22 93.94
spambase (2 cl.) 83.19 83.18 82.75 82.68 93.62 93.76 94.40 94.48
spectf (2 cl.) 57.47 57.47 62.69 62.69 85.28 84.46 87.23 86.00
splice (3 cl.) 95.02 95.36 95.08 95.83 97.69 97.66 98.42 98.32
tae (3 cl.) 49.99 49.99 51.64 51.02 51.87 51.83 52.14 52.14
tic-tac-toe (2 cl.) 96.37 96.40 97.56 97.63 99.38 99.47 99.69 99.65
wine (3 cl.) 89.35 89.89 90.64 90.31 98.46 96.83 99.18 98.84
yeast (10 cl.) 69.25 69.54 73.46 74.43 73.76 73.72 70.60 73.90

examples. For data sets with more than two classes,
the total AUC was calculated by summing the AUC for
each class weighted by its relative frequency in the data
set[9].7

3.1.3 Test hypotheses The two main null hypothe-
ses can be formulated in the following way:

• forming a decision list from a set of order-
independent rules that have been generated for all
classes is not more effective w.r.t. AUC than gen-
erating a sequence of order-dependent rules with a
default rule for one of the classes

• keeping a rule set unordered is not more effective
w.r.t. AUC than forming a decision list by ordering
the rules according to decreasing probability of the
most probable class

In addition, we also test the following null hypothe-
ses:

7For two-class problems, the total AUC is equivalent to AUC.

• lift does not result in a higher AUC than us-
ing accuracy as an exclusion criterion for order-
dependent rules

• post-processing does not improve AUC

3.2 Experimental Results The AUC for all meth-
ods on all 34 data sets are shown in Table 3.

In Table 4, the number of wins and losses for each
pair of methods is shown, where results for which the p-
value (one-sided binomial tail probability) are less than
0.05 are marked with bold-face.

One can see that generating order-independent
rules for all classes and ordering them (i.e., DL/U)
is more effective than generating a sequence of order-
dependent rules with one of the classes as a default
(i.e., DL/OL and DL/OLP). The p-value for obtaining
24 wins and 10 losses is 1.22× 10−02, allowing the first
null hypothesis to be rejected with a low probability of
error.



Table 4: AUC wins and losses for all 8 methods (row wins/column wins).

DL/O DL/OP DL/OL DL/OLP DL/U DL/UP RS RS/P
DL/O - 12/16 4/29 6/27 5/29 7/27 6/28 5/29
DL/OP 16/12 - 8/25 5/28 5/29 7/27 6/28 5/29
DL/OL 29/4 25/8 - 14/19 10/24 8/26 8/26 5/29
DL/OLP 27/6 28/5 19/14 - 10/24 9/25 7/27 6/28
DL/U 29/5 29/5 24/10 24/10 - 20/14 8/26 8/26
DL/UP 27/7 27/7 26/8 25/9 14/20 - 8/26 5/29
RS 28/6 28/6 26/8 27/7 26/8 26/8 - 20/13
RS/P 29/5 29/5 29/5 28/6 26/8 29/5 13/20 -

Combining all applicable rules in a set of order-
independent rules rather than ordering the rules and
using the first applicable rule (i.e., RS vs. DL/U)
results in a significant increase in AUC. The p-value for
obtaining 26 wins and 8 losses is 1.47× 10−03, allowing
the rejection of the second null hypothesis.

One can see that using lift as an exclusion criterion
indeed is clearly more effective than using accuracy for
order-dependent rules, independently of whether or not
post-processing is employed (i.e., DL/O vs. DL/OL and
DL/OP vs. DL/OLP). The p-value of obtaining the
observed number of wins and losses, given that the
corresponding null hypothesis is true, is 5.46 × 10−06

without post-processing and 3.31 × 10−05 with post-
processing, allowing the third null hypothesis to be
safely rejected.

It should be noted that in case we consider only
the results from the binary classification tasks, the first
three null hypotheses can still be rejected. Hence, the
conclusions can be drawn independently of the chosen
way of calculating total AUC.

When it comes to whether or not post-processing
actually is beneficial w.r.t. AUC, the picture is less
clear. For order-dependent rules, the use of post-
processing appears to be beneficial, with a win/loss ratio
for DL/OLP vs. DL/OL of 19/14 and for DL/OP vs.
DL/O of 16/12, neither of which however allows the
null hypothesis to be rejected (the p-values are 0.243
and 0.286 respectively). For order-independent rules,
there is actually a loss, although not significant, w.r.t.
AUC from using post-processing. However, this actually
supports the above used argument for that the number
of ways to partition the examples has an effect on the
AUC. By reducing the number of rules that can be
combined, the number of ways to partition the examples
is reduced and so is the AUC.

From the point of view of interpretability, the
rule sets become much smaller with post-processing
as shown in Table 5, and one may conclude that the
rule sets can be simplified without significantly loosing
performance.

It can also be observed in Table 5 that the number of
rules typically increases when using lift instead of accu-
racy as exclusion criterion (the number of rules increases
32 times and decreases 1 time without post-processing,
while the number of rules increases 29 times and de-
creases 2 times with post-processing). This indicates
that the benefit of using lift compared to accuracy ac-
tually comes from including rules that otherwise would
have been excluded (due to too low accuracy), rather
than from eliminating rules that introduce concavities.

Although not in the direct scope of this study,
we also compared the accuracies of all methods, as
shown in Table 6 (none of the double-sided binomial
tail probabilities are less than 0.05 for the observed
number of wins and losses). It can be seen that using lift
for order-dependent rules actually performs worse w.r.t
accuracy than when using the accuracy-based criterion
(i.e., DL/O vs. DL/OL). It can be concluded that the
best choice of exclusion criterion for order-dependent
rules depends on whether accuracy or AUC is to be
maximized.

4 Related Work

In [9], a number of different methods for combining gen-
erated rules were evaluated w.r.t. AUC, using two dif-
ferent methods for generating order-independent rules.
The results were not conclusive in that study regard-
ing the benefits of combining multiple rules compared
to using the single best rule. For one of the induction
methods in that study, the former was slightly ahead
of the latter (9 wins and 5 losses for weighted voting
compared to using the single best rule), while almost
the opposite result was obtained for the second method
(3 wins and 9 losses). This may be due to that the
weighted voting method only takes the highest proba-
bility of each rule into account, which contrasts to the
use of näıve Bayes in our study that utilizes all class
probabilities.

The observation that a higher AUC can be obtained
by combining multiple rules has previously been made
also for probability estimation trees (PETs). It has been
demonstrated that combining rules from PETs obtained



Table 5: Mean no. of rules for all 8 methods on the 34 data sets.

Data set DL/O DL/OP DL/OL DL/OLP DL/U DL/UP RS RS/P
audiology (24 cl.) 5.7 5.4 10.5 8.9 19.3 11.4 19.3 14.5
balance-scale (3 cl.) 14.2 11.2 14.5 10.9 58.1 28.3 58.1 37.8
breast-cancer (2 cl.) 2.8 2.8 5.0 4.5 11.3 9.3 11.3 9.8
breast-cancer-wisconsin (2 cl.) 8.8 8.1 9.9 8.1 23.2 12.4 23.2 13.7
car (4 cl.) 16.6 15.2 31.8 24.8 51.6 32.0 51.6 41.5
cleveland-heart-disease (5 cl.) 1.5 1.5 5.7 5.3 13.2 9.6 13.2 10.9
crx (2 cl.) 11.3 8.2 12.7 9.1 27.2 9.8 27.2 19.3
cylinder-bands (2 cl.) 9.4 8.4 10.5 9.1 20.7 17.6 20.7 18.6
dermatology (6 cl.) 8.4 6.9 11.3 8.3 15.8 10.1 15.8 10.6
ecoli (8 cl.) 7.6 6.5 10.9 8.8 28.9 13.2 28.9 16.1
glass (6 cl.) 5.0 4.7 8.5 7.4 10.6 8.2 10.6 9.1
hepatitis (2 cl.) 2.2 2.1 2.8 2.5 12.2 7.9 12.2 8.9
house-votes (2 cl.) 4.1 3.2 4.8 3.6 13.1 6.8 13.1 8.3
image-segmentation (7 cl.) 7.6 6.9 10.3 8.9 15.9 10.7 15.9 13.4
ionosphere (2 cl.) 5.4 5.3 6.3 6.1 16.7 12.1 16.7 12.8
iris (3 cl.) 5.8 4.3 6.2 4.3 11.3 6.5 11.3 7.0
kr-vs-kp (2 cl.) 23.3 16.1 25.0 17.4 54.1 28.0 54.1 35.5
lung-cancer (3 cl.) 2.3 2.3 2.9 2.8 3.8 3.7 3.8 3.7
lymphography (4 cl.) 3.6 3.1 4.8 4.1 11.7 8.2 11.7 8.6
mushroom (2 cl.) 11.2 9.8 11.2 9.8 45.6 24.0 45.6 23.1
new-thyroid (3 cl.) 4.4 4.2 5.4 5.1 9.3 6.1 9.3 7.4
pima-indians-diabetes (2 cl.) 6.7 5.9 9.5 8.2 26.5 16.5 26.5 19.1
post-operative-patients (3 cl.) 1.0 1.0 1.6 1.4 3.7 3.4 3.7 3.4
primary-tumor (21 cl.) 3.0 2.8 9.2 7.9 32.8 16.1 32.8 18.5
promoters (2 cl.) 3.9 3.7 4.7 4.5 8.8 7.4 8.8 7.9
sick-euthyroid (2 cl.) 5.6 5.0 7.2 5.9 31.8 14.8 31.8 21.4
soybean-large (19 cl.) 17.2 16.3 20.9 19.1 33.2 24.2 33.2 26.9
spambase (2 cl.) 32.5 23.2 32.3 22.9 101.5 60.6 101.5 84.4
spectf (2 cl.) 3.0 2.9 3.7 3.6 23.8 15.9 23.8 17.2
splice (3 cl.) 18.0 13.3 25.9 18.1 105.8 69.2 105.8 89.5
tae (3 cl.) 2.9 2.9 6.1 5.8 7.6 6.9 7.6 7.4
tic-tac-toe (2 cl.) 9.6 9.0 11.1 10.1 35.4 20.6 35.4 21.3
wine (3 cl.) 5.9 5.2 6.5 5.7 11.8 7.7 11.8 8.8
yeast (10 cl.) 13.5 10.6 25.0 17.9 39.6 18.6 39.6 19.9

by bagging [21], combining all leaves in a PET based
on the deviation of the leaves from the example to be
classified [19], and combining all nodes in the path to
the leave [11], all lead to an increase in AUC.

In this study, we have not considered any alterna-
tive to the used pruning criterion, since this criterion
has earlier been shown to maximize AUC [14]. Nev-
ertheless, work on inducing PETs have demonstrated
that a higher AUC can be obtained when pruning is
not employed, given that the class probabilities are
smoothed using either Laplace correction or the m-
estimate [21, 11, 19]. However, as pointed out in [11],
it is not clear whether the reason is that current prun-
ing methods for PETs are aiming for maximizing ac-
curacy or if pruning is “intrinsically detrimental”. In
contrast to pruning methods for PETs, the pruning cri-
terion used in this study is in fact aiming at maximizing
AUC.

5 Concluding Remarks

We have considered two central aspects of rule learning
when aiming to maximize AUC: i) whether or not to
use a default rule for one of the classes and ii) whether
or not to impose an order upon the rules.

We explained why learning decision lists by ordering
rules that have been generated for all classes could be
expected to give a higher AUC than generating order-
dependent rules with a default-rule for one of the classes.
The main reason for this is that the former method
allows examples to be ranked according to a more fine-
grained scale compared to the latter, since examples
belonging to the default class cannot be differentiated
in the latter case. The empirical evaluation did indeed
show that the former way of generating a decision list
significantly outperforms the latter.

We also explained why a higher AUC could be
expected if class probabilities are formed using all
applicable rules rather than using the first rule in
an ordered rule set. The main reason for this is
that the number of partitions according to probability
of belonging to a class grows exponentially with the
number of rules that may overlap. Again, this allows
examples to be ranked according to a more fine-grained



Table 6: Accuracy wins and losses for all 8 methods (row wins/column wins).

DL/O DL/OP DL/OL DL/OLP DL/U DL/UP RS RS/P
DL/O - 5/11 18/10 14/17 12/21 13/19 13/21 14/20
DL/OP 11/5 - 19/11 14/15 12/21 13/19 13/21 13/20
DL/OL 10/18 11/19 - 10/16 11/21 12/19 13/20 13/17
DL/OLP 17/14 15/14 16/10 - 14/19 13/20 14/19 14/18
DL/U 21/12 21/12 21/11 19/14 - 20/11 13/19 12/16
DL/UP 19/13 19/13 19/12 20/13 11/20 - 12/19 13/20
RS 21/13 21/13 20/13 19/14 19/13 19/12 - 16/13
RS/P 20/14 20/13 17/13 18/14 16/12 20/13 13/16 -

scale. This expectation was confirmed by the empirical
evaluation that showed a significantly higher AUC for
using all applicable rules compared to using the first
rule in the ordered set.

In summary, the attractive properties of decision
lists compared to rule sets, i.e., to require only a simple
inference mechanism and to allow for a more compact
representation, actually have a negative effect on the
AUC.
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