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Abstract

The use of incremental reduced error pruning
for maximizing the area under the ROC curve
(AUC) instead of accuracy is investigated.
A commonly used accuracy-based exclusion
criterion is shown to include rules that re-
sult in concave ROC curves as well as to ex-
clude rules that result in convex ROC curves.
A previously proposed exclusion criterion for
unordered rule sets, based on the lift, is on
the other hand shown to be equivalent to re-
quiring a convex ROC curve when adding
a new rule. An empirical evaluation shows
that using lift for ordered rule sets leads to
a significant improvement. Furthermore, the
generation of unordered rule sets is shown to
allow for more fine-grained rankings than or-
dered rule sets, which is confirmed by a signif-
icant gain in the empirical evaluation. Elimi-
nating rules that do not have a positive effect
on the estimated AUC is shown to slightly
improve AUC for ordered rule sets, while no
improvement is obtained for unordered rule
sets.

1. Introduction

There has recently been a growing interest in us-
ing ROC curves for analyzing rule learning methods
(Fürnkranz & Flach, 2003; Fürnkranz & Flach, 2004;
Fürnkranz & Flach, 2005) as well as using rule learn-
ing methods for maximizing the area under the ROC
curve (AUC) (Fawcett, 2001; Lavrac et al., 2004; Prati
& Flach, 2004)). The main motivations for using
AUC as an evaluation criterion instead of accuracy,
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which traditionally has been the most common crite-
rion for comparing rule induction methods (e.g. (Co-
hen, 1995)), are that it is insensitive to the actual class
distribution on which the model is tested and that it
does not assume equal misclassification costs (Bradley,
1997; Provost et al., 1998). As noted in (Bradley,
1997), the AUC can be interpreted as the probabil-
ity of ranking a true positive example higher than a
false positive when ordering examples according to de-
creasing likelihood of being positive.

Incremental reduced error pruning, which was origi-
nally introduced in (Fürnkranz & Widmer, 1994), is a
technique that has been extensively used for efficient
separate-and-conquer rule learning (e.g., (Fürnkranz
& Widmer, 1994; Cohen, 1995; Frank & Witten, 1998;
Dain et al., 2004; Boström, 2004)). By pruning each
rule immediately after its generation and removing ex-
amples covered by the pruned rule, the number of gen-
erated rules is kept relatively small compared to keep-
ing each rule unpruned and removing the relatively few
examples covered by each, more specific, rule. Since
the computational cost grows as the product of the
number of generated rules and the number of training
examples, incremental reduced error pruning normally
allows substantially larger training sets to be handled.
A number of criteria for deciding how to prune gener-
ated rules and whether or not to exclude a generated
rule have previously been proposed and evaluated with
respect to maximizing accuracy (Fürnkranz & Wid-
mer, 1994; Cohen, 1995; Boström, 2004).

In this work, we investigate the use of incremen-
tal reduced error pruning for maximizing AUC. This
includes investigating whether previously proposed
pruning and exclusion criteria for maximizing accu-
racy also are reasonable for maximizing AUC. It turns
out that one of the most frequently used pruning cri-
teria, precision, already has been shown to maximize
AUC (Fürnkranz & Flach, 2005), and hence may be
used also for this purpose. We show, however, that



the most commonly used exclusion criterion, based on
accuracy, is less suited, since it may lead to concave
ROC curves as well as to excluding rules that would
result in convex ROC curves. On the other hand, a
previously proposed exclusion criterion for unordered
rule sets, based on the lift, is shown to include a rule
if and only if it leads to a convex ROC curve.

We also study using incremental reduced error prun-
ing for maximizing AUC by generating both ordered
and unordered rule sets. In contrast to ordered rule
sets (also known as decision lists (Rivest, 1987)), which
classify examples according to the first applicable rule,
a prediction is formed from all applicable rules in an
unordered rule set (see (Fawcett, 2001) for compar-
isons of a number of methods for forming the pre-
diction to maximize AUC). Moreover, incremental re-
duced error pruning for ordered rule sets generate rules
for all classes except one, which is used to label a de-
fault rule, while incremental reduced error pruning for
unordered rule sets results in rules that characterize all
classes. We will explain why these two differences may
in fact be advantageous when generating unordered
rule sets to maximize AUC.

In the next section, we present the two variants of in-
cremental reduced error pruning (resulting in ordered
and unordered rule sets respectively), and present a
method for post-processing generated rules by elimi-
nating rules that do not appear to improve AUC. We
analyze the suitability of previously proposed exclu-
sion criteria for maximizing AUC. We also explain why
generating unordered rule sets could be expected to
give a higher AUC than by generating ordered rule
sets. In Section 3, an empirical comparison of the
methods is given, and finally, in Section 4, we conclude
by discussing made observations and outline some di-
rections for future work.

2. Methods

2.1. Incremental Reduced Error Pruning

In Fig. 1 and Fig. 2 two variants of incremental reduced
error pruning are shown. The first, called IREP-O,
generates ordered rule sets and is a variant of the al-
gorithms presented in (Fürnkranz & Widmer, 1994;
Cohen, 1995), while the second, called IREP-U, gener-
ates unordered rule sets and is taken from (Boström,
2004). The main differences between the algorithms
is that that the latter generates rules for all classes,
while the former will form a default rule for the last
class. Furthermore, the prune set is kept constant in
the latter algorithm, allowing each rule to be evalu-
ated and pruned independently of previously gener-

ated rules, while the former removes covered exam-
ples from both the grow and prune sets. It should be
noted that in the original formulation of incremental
reduced error pruning for ordered rule sets (Fürnkranz
& Widmer, 1994), only two-class problems were han-
dled, while this was extended to multi-class problems
in (Cohen, 1995). The algorithm for ordered rule sets
presented here slightly differs from the previous in that
a prune set is generated initially, from which examples
are removed only if they are covered by a generated
rule that should not be excluded. In the original for-
mulation, the remaining examples to be covered were
repeatedly divided into a grow and prune set each time
a new rule was to be generated, and the rule genera-
tion was terminated whenever a rule was found that
should not be included.1

Two problems that need to be addressed when apply-
ing unordered rules is how to classify examples that
are covered by multiple, possible conflicting rules, and
how to classify examples that are not covered at all.
The former problem is in this work addressed by ap-
plying näıve Bayes as in (Boström, 2004), while the
latter is addressed by classifying the example accord-
ing to the class distribution of those examples in the
prune set that are not covered by any rules.2

For both algorithms, class probability distributions are
formed using the covered examples in the prune set
together with Laplace correction (Cestnik & Bratko,
1991).

2.2. Pruning and Exclusion Criteria for
Maximizing AUC

Several commonly employed pruning criteria for incre-
mental reduced error pruning have been shown to be
equivalent to maximizing precision, i.e., the fraction

p
p+n , where p and n are the number of covered pos-
itive and negative examples respectively (Fürnkranz
& Flach, 2005). In the same work, it is noted that
maximizing precision in fact is equivalent to attempt-
ing to maximize AUC. To see this, assume we start
with a default rule assigning zero probability of be-
ing positive to all examples (i.e., the ROC curve is a
straight line from (0, 0) to (0, 1), where the x- and y-
coordinates give the fraction of covered false and true
positives respectively). If we add a rule that covers p

1In (Cohen, 1995), an alternative stopping condition
was introduced, allowing the number of bits required to
encode the rules and class labels to grow up to d when
adding a rule compared to the minimum encoding found
so far, where d is a user-specified parameter.

2If this set is empty, the distribution is formed using
the original prune set.



function IREP-O(OrderedClasses,Examples)
Rules := ∅
Make stratified split of Examples into

Grow and Prune
for each Class ∈ OrderedClasses do

if Last(Class, OrderedClasses) then
Rules := Rules ∪ {DefaultRule(Prune)}

else
Pos := {e : e ∈ Grow ∧ Class(e) = Class}
Neg := Grow \ Pos
while Pos 6= ∅ do

Rule := GrowRule(Pos, Neg)
Rule := PruneRule(Rule, Prune)
if Exclude(Rule, Prune) then

Grow := Grow \ Covers(Rule, Pos)
Pos := Pos \ Covers(Rule, Pos)

else
Rules := Rules ∪ {Rule}
Grow := Grow \ Covers(Rule, Grow)
Prune := Prune\Covers(Rule, Prune)

return Rules

Figure 1. The IREP-O algorithm.

positive and n negative examples to this classifier, ex-
amples covered by this rule will be given a higher rank
than those classified by the default rule alone. The
ROC curve will now consist of two segments, passing
through (0, 0), (n/N, p/P ) and (1, 1), where N and P
are the total number of negative and positive examples
respectively. In order to maximize AUC, we would like
to maximize the slope of the first segment3, which is
given by p/P

n/N . Since P and N are constant for all can-
didate rules, maximizing the slope of the ROC curve
is equivalent to maximizing precision4.

A commonly employed exclusion criterion when gen-
erating ordered rule sets is p

p+n ≤ 1/2 (Fürnkranz &
Widmer, 1994; Cohen, 1995), which is natural when
maximizing accuracy, since an added rule for the pos-
itive class may otherwise be allowed to make more er-
rors than correct classifications. However, when max-
imizing AUC, this criterion may in fact allow a rule to
be added for which the slope of the corresponding first
segment of the ROC curve is less than one, i.e., the

3This would not necessarily be optimal if we were al-
lowed to add one rule only, but this strategy assumes that
an arbitrary number of additional rules may be added.

4Maximizing p
p+n

is equivalent to minimizing p+n
p

=

1 + n/p which in turn is equivalent to maximizing p/n.

function IREP-U(Classes,Examples)
Rules := ∅
Make stratified split of Examples into
Grow and Prune
for each Class ∈ Classes do

Pos := {e : e ∈ Grow ∧ Class(e) = Class}
Neg := Grow \ Pos
while Pos 6= ∅ do

Rule := GrowRule(Pos, Neg)
Rule := PruneRule(Rule, Prune)
if not Exclude(Rule, Prune) then

Rules := Rules ∪ {Rule}
Pos := Pos \ Covers(Rule, Pos)

return Rules

Figure 2. The IREP-U algorithm.

corresponding ROC curve is concave, since the slope
depends on the total number of positive and negative
examples as shown above. For example, if p = 2n
and P = 3N then the rule would be included using
this criterion (since 2/3 > 1/2), but the slope will be
n
N

2
3 ≤ 2/3. Moreover, this criterion may also exclude

rules that result in a slope greater than one. For ex-
ample, if n = 2p and N = 3P then the rule would
be excluded using this criterion (since 1/3 ≤ 1/2), but
the slope will be p

P
3
2 , which is greater than one, if

p/P > 2/3.

For unordered rule sets, lift (i.e.,
p

p+n
P

P+N

) has been the

basis for both a pruning and an exclusion criterion
(Boström, 2004).5 It should be noted that using lift
as a pruning criterion is equivalent to using precision,
since P

P+N is constant. However, excluding rules with
a lift less than or equal to one turns out to be equiva-
lent to requiring a convex ROC curve for an included
rule (i.e., the slope of the first segment must be greater
than one), since

p
p+n

P
P+N

≤ 1 ⇐⇒ p

p + n
≤ P

P + N
⇐⇒

p(P + N) ≤ P (p + n) ⇐⇒ pN ≤ Pn ⇐⇒

p

P
≤ n

N
⇐⇒

p
P
n
N

≤ 1

5The term likelihood ratio to default was used instead of
lift in that work.



2.3. Post-processing Rule Sets w.r.t. AUC

It has been observed that significant gains can be ob-
tained when using incremental reduced error pruning
for maximizing accuracy, by post-processing generated
rules through considering replacements of each rule
with more general or specific versions followed by elim-
inating rules that increase the total description length
(Cohen, 1995). A similar procedure may be used also
for maximizing AUC. In this work, we consider a sim-
plified procedure, in which each rule is either kept or
completely eliminated (i.e., replacement rules are not
considered), and instead of minimizing the description
length, rules that do not contribute positively to the
AUC (as estimated on the prune set) are removed.

It should be noted that when removing a rule from
an unordered rule set, the class distributions of the
remaining rules are not affected, since the coverage of
each rule on the prune set is independent of the other
rules. Hence, one pass through the rules suffices for
finding out which rules should be removed. On the
other hand, when removing a rule from an ordered
rule set, the class distributions of the successive rules
may be affected. Hence it matters in what order rules
are removed and several passes over the rules may be
required. In our study, rules are considered in the same
order as they were generated, and whenever a rule is
removed, the remaining rules are considered from the
beginning.

2.4. Ordered vs. Unordered IREP for
Maximizing AUC

As mentioned in the introduction, the fact that
when using unordered rule sets, classifications may be
formed from several rules and that rules are generated
for each class can be beneficial when trying to maxi-
mize AUC, as explained below.

Assume that we are facing a two-class learning task,
where each class requires two rules if defined sepa-
rately. Assume further that attached to each rule
is a class probability distribution. An ordered rule
set would then typically consist of three rules HO =
R1, R2, R3, where the two first rules would assign the
same most probable class (positive) to covered exam-
ples, while the last would act as a default rule, assign-
ing the other class (negative) to any examples that
are not covered by the first two rules. From a ranking
perspective, where we want to order a set of examples
from the most likely positive to the least likely, the
ordered rule set HO allows for partitioning the exam-
ples in (at most) three groups, where all examples in a
group are given the same score (i.e., probability of be-

Table 1. Employed Methods

Acronym Algorithm Post-Processing Excl. crit.

DL IREP-O no accuracy

DLP IREP-O yes accuracy

DL-L IREP-O no lift

DLP-L IREP-O yes lift

RS IREP-U no lift

RSP IREP-U yes lift

ing positive).6 In particular, all examples that would
be classified as negative are placed in the same group
and could hence not be differentiated.

On the other hand, an unordered rule set would typ-
ically consist of four rules HU = {R1, R2, R3, R4}, for
which the class distributions of the two first would give
the positive class a higher probability than the nega-
tive and vice versa for the last two rules. Since an ex-
ample that is to be ranked in principle can be covered
by any subset of the four rules, we have at most 24 pos-
sible groups to place the example in. This means that
examples (either classified as positive or negative) can
be ranked according to a much more fine-grained scale.
Even if no or few of the rules that would assign differ-
ent classes do overlap, the possibility of differentiating
examples independently of whether they are classified
as positive or negative still allows for the examples to
be partitioned into more groups.

3. Empirical Evaluation

3.1. Experimental Setting

3.1.1. Methods

The methods that are to be compared are variants
of the IREP-O and IREP-U algorithms using two dif-
ferent exclusion criteria for IREP-O (accuracy and lift
respectively) and with and without post-processing for
both algorithms. All methods use precision as a prun-
ing criterion, and 2/3 of the training examples are used
for growing rules, while 1/3 are used for pruning. All
methods are given the same grow and prune sets. The
employed methods are summarized in Table 1.

6There will be fewer possible groups if the same proba-
bility distribution is attached to multiple rules.



Table 2. AUC for all 6 methods on the 34 data sets.

Data set DL DLP DL-L DLP-L RS RSP

breast-cancer (2 cl.) 59.17 59.17 61.22 62.11 66.58 65.85
breast-cancer-wisconsin (2 cl.) 95.31 95.07 96.42 96.40 99.13 98.76
crx (2 cl.) 85.70 86.64 85.76 87.39 89.95 89.41
cylinder-bands (2 cl.) 73.98 73.94 71.46 70.93 72.97 72.62
hepatitis (2 cl.) 65.98 66.35 73.34 73.42 82.96 82.00
house-votes (2 cl.) 97.38 97.61 97.49 97.81 97.91 97.19
ionosphere (2 cl.) 91.72 90.69 91.81 90.53 95.09 93.83
kr-vs-kp (2 cl.) 95.92 96.11 97.03 97.25 99.54 99.67
mushroom (2 cl.) 99.80 99.80 99.80 99.80 99.99 99.98
pima-indians-diabetes (2 cl.) 65.27 65.27 69.48 69.24 76.90 76.66
promoters (2 cl.) 71.21 72.10 73.82 76.23 85.11 85.87
sick-euthyroid (2 cl.) 81.75 81.46 90.57 91.11 95.67 95.63
spambase (2 cl.) 83.19 83.18 82.75 82.68 94.40 94.48
spectf (2 cl.) 57.47 57.47 62.69 62.69 87.23 86.00
tic-tac-toe (2 cl.) 96.37 96.40 97.56 97.63 99.69 99.65
balance-scale (3 cl.) 80.19 80.41 78.44 79.77 95.83 95.74
splice (3 cl.) 95.70 95.82 96.46 96.81 98.05 97.95
tae (3 cl.) 50.73 50.73 50.78 50.84 52.77 52.77
iris (3 cl.) 94.75 95.60 95.00 95.87 97.91 98.12
lung-cancer (3 cl.) 62.05 62.05 64.01 64.01 70.01 70.01
new-thyroid (3 cl.) 86.98 87.17 90.44 90.55 96.43 96.50
post-operative-patients (3 cl.) 50.00 50.00 47.83 43.08 40.67 39.46
wine (3 cl.) 89.35 89.89 90.64 90.31 99.18 98.84
car (4 cl.) 84.99 85.12 93.27 94.49 97.93 98.11
lymphography (4 cl.) 71.82 70.37 75.55 74.35 76.32 80.14
cleveland-heart-disease (5 cl.) 53.06 53.06 68.33 67.71 65.50 65.93
glass (6 cl.) 66.80 66.34 67.83 69.25 72.25 72.79
dermatology (6 cl.) 88.64 88.53 94.88 94.33 97.40 97.27
image-segmentation (7 cl.) 88.32 88.06 89.82 89.85 92.11 91.26
ecoli (8 cl.) 88.12 88.04 92.26 92.27 87.83 93.09
yeast (10 cl.) 69.25 69.54 73.46 74.43 70.60 73.90
soybean-large (19 cl.) 92.45 92.32 92.51 92.22 92.22 93.94
primary-tumor (21 cl.) 58.22 58.29 67.97 68.26 66.47 70.66
audiology (24 cl.) 81.37 81.46 83.59 84.36 80.82 81.24

3.1.2. Methodology and data sets

We have chosen to compare the methods w.r.t. AUC
using ten-fold cross-validation on 34 data sets from the
UCI Repository (Blake & Merz, 1998). The names of
these data sets together with the number of classes are
listed in Table 2. The AUC was calculated for each
method on all examples according to (Fawcett, 2003)
and all methods were given exactly the same train-
ing and test examples. For data sets with more than
two classes, the total AUC was calculated (Fawcett,
2001).7

3.1.3. Test hypotheses

There are actually a number of hypotheses to be
tested: does lift result in a higher AUC than using ac-
curacy as an exclusion criterion for ordered rule sets,
is the suggested post-processing method beneficial for
(ordered and unordered) incremental reduced error

pruning, and does unordered incremental reduced er-
ror pruning outperform the ordered variant.

3.2. Experimental Results

The AUC for all methods on all 34 data sets are shown
in Table 2, where the best result for each data set is in
bold-face and the rows are ordered after the number
of classes in each data set.

In Table 3, the number of wins and losses for each
pair of methods is shown, together with the p-value of
obtaining that result if the null hypothesis holds (i.e.,
both methods are equally likely to win).

One can see that using lift as an exclusion criterion
indeed is clearly more effective than using accuracy
for ordered rule sets (independently of whether or not

7For two-class problems, the total AUC is equivalent to
AUC.



Table 3. Summary of all wins and losses for all 6 methods (row wins/column wins).

DL DLP DL-L DLP-L RS RSP

DL - 13/15 (8.51e-01) 4/29 (1.09e-05) 6/27 (3.24e-04) 5/29 (3.86e-05) 4/30 (6.16e-06)

DLP 15/13 (8.51e-01) - 7/26 (1.32e-03) 6/27 (3.24e-04) 5/29 (3.86e-05) 4/30 (6.16e-06)

DL-L 29/4 (1.09e-05) 26/7 (1.32e-03) - 12/20 (2.15e-01) 7/27 (8.21e-04) 4/30 (6.16e-06)

DLP-L 27/6 (3.24e-04) 27/6 (3.24e-04) 20/12 (2.15e-01) - 7/27 (8.21e-04) 5/29 (3.86e-05)

RS 29/5 (3.86e-05) 29/5 (3.86e-05) 27/7 (8.21e-04) 27/7 (8.21e-04) - 18/14 (5.97e-01)

RSP 30/4 (6.16e-06) 30/4 (6.16e-06) 30/4 (6.16e-06) 29/5 (3.86e-05) 14/18 (5.97e-01) -

post-processing is employed). The p-value of obtaining
the observed number of wins and losses is 1.09×10−05

without post-processing and 3.24 × 10−04 with post-
processing, allowing the null hypothesis to be safely
rejected.

One can also see that generating unordered rule sets
(with or without post-processing) results in a higher
AUC than when generating ordered rule sets (for
both exclusion criteria). With no post-processing, the
win/loss ratio between generating unordered rule sets
and ordered rule sets using lift is 27/7 and the p-value
is 8.21×10−04, and with post-processing, the win/loss
ratio is 29/5 and the p-value is 3.86 × 10−05, in both
cases allowing the null hypothesis to be rejected.

When it comes to whether or not the proposed post-
processing procedure actually is beneficial w.r.t. AUC,
the picture is less clear. For ordered rule sets gen-
erated from using lift as the exclusion criterion, the
use of post-processing appears to be beneficial with a
win/loss ratio to not using post-processing of 20/12,
which however does not allow the null hypothesis to
be rejected (the p-value is 0.215). For ordered rule
sets generated with the accuracy-based criterion and
for unordered rule sets, there seem to be no gains w.r.t.
AUC from using the proposed post-processing method.
However, from the point of view of interpretability, the
rule sets become much smaller with post-processing as
shown in Table 4. One might conclude that the rule
sets can be simplified without significantly loosing per-
formance.

It can also be observed in Table 4 that the number
of rules typically increases when using lift instead of
accuracy as exclusion criterion for ordered rule sets
(the number of rules increases 32 times and decreases
1 time without post-processing, while the number of

rules increases 29 times and decreases 2 times with
post-processing). This indicates that the benefit of us-
ing lift compared to accuracy actually comes from in-
cluding rules that otherwise would have been excluded
(due to too low accuracy), rather than from eliminat-
ing rules that introduce concavities.

4. Concluding Remarks

We have studied the use of incremental reduced er-
ror pruning for maximizing AUC instead of accuracy.
While a commonly employed pruning criterion, based
on precision, has been shown to maximize AUC, we
show that a commonly used exclusion criterion, based
on accuracy, may include rules that result in concave
ROC curves, as well as exclude rules that result in
convex ROC curves. We showed that a previously pro-
posed exclusion criterion, based on lift, includes a rule
if and only if the resulting ROC curve is convex, and
an empirical evaluation gave strong evidence for that
the use of this criterion improves AUC compared to
the accuracy-based criterion for ordered rule sets.

We have also presented arguments for why one might
expect the generation of unordered rule sets to give a
higher AUC than when generating ordered rule sets:
the number of ways to partition the examples is in-
creased by forming class distributions from multiple
rules as well as that rules are generated for all classes.
This was also confirmed to be highly beneficial by the
empirical evaluation. Although we did not experiment
with alternative ways of forming the predictions, this
study in a way confirms the observation in (Fawcett,
2001), that a higher AUC is obtained by combining all
applicable rules than using a single rule.

Finally, we studied whether eliminating rules that do



Table 4. Mean no. of rules for all 6 methods on the 34 data sets.

Data set DL DLP DL-L DLP-L RS RSP

breast-cancer (2 cl.) 2.8 2.8 5.0 4.4 11.3 9.8
breast-cancer-wisconsin (2 cl.) 8.8 8.1 9.9 8.1 23.2 13.7
crx (2 cl.) 11.3 8.2 12.7 9.1 27.2 19.3
cylinder-bands (2 cl.) 9.4 8.2 10.3 9.1 20.7 18.5
hepatitis (2 cl.) 2.2 2.1 2.8 2.5 12.2 8.9
house-votes (2 cl.) 4.1 3.2 4.8 3.6 13.1 8.3
ionosphere (2 cl.) 5.4 5.1 6.6 6.2 15.6 12.2
kr-vs-kp (2 cl.) 23.3 16.1 25.0 17.4 54.1 35.5
mushroom (2 cl.) 11.2 9.8 11.2 9.8 45.6 23.1
pima-indians-diabetes (2 cl.) 6.7 5.9 9.5 8.2 26.5 19.1
promoters (2 cl.) 4.0 3.7 5.4 4.6 8.0 7.4
sick-euthyroid (2 cl.) 5.6 5.0 7.2 5.9 31.8 21.4
spambase (2 cl.) 32.5 23.2 32.3 22.9 101.5 84.4
tic-tac-toe (2 cl.) 9.6 9.0 11.1 10.1 35.4 21.3
spectf (2 cl.) 3.0 2.9 3.7 3.6 23.8 17.2
balance-scale (3 cl.) 14.2 11.2 14.5 10.9 58.1 37.8
iris (3 cl.) 5.8 4.3 6.2 4.3 11.3 7.0
lung-cancer (3 cl.) 1.9 1.9 2.3 2.3 3.4 3.3
new-thyroid (3 cl.) 4.4 4.2 5.4 5.1 9.3 7.4
post-operative-patients (3 cl.) 1.0 1.0 1.6 1.4 3.7 3.4
splice (3 cl.) 15.6 13.3 20.8 16.3 104.0 87.8
tae (3 cl.) 2.8 2.8 6.2 5.6 8.1 8.0
wine (3 cl.) 5.9 5.2 6.5 5.7 11.8 8.8
car (4 cl.) 16.6 15.2 31.8 24.8 51.6 41.5
lymphography (4 cl.) 3.6 3.1 4.8 4.1 11.7 8.6
cleveland-heart-disease (5 cl.) 1.5 1.5 5.7 5.3 13.2 10.9
dermatology (6 cl.) 8.4 6.9 11.3 8.4 15.8 10.6
glass (6 cl.) 5.0 4.7 8.5 7.4 10.6 9.1
image-segmentation (7 cl.) 7.6 6.9 10.3 8.9 15.9 13.4
ecoli (8 cl.) 7.6 6.5 10.9 8.8 28.9 16.1
yeast (10 cl.) 13.5 10.6 25.0 17.9 39.6 19.9
soybean-large (19 cl.) 17.2 16.3 20.9 18.8 33.2 26.9
primary-tumor (21 cl.) 3.6 3.4 9.7 8.5 28.5 16.2
audiology (24 cl.) 5.7 5.4 10.5 8.9 19.3 14.5

not contribute positively to the AUC (as estimated
on the prune set) actually lead to any improvements.
A slight improvement was observed for ordered rule
sets (when using lift as an exclusion criterion), while
no improvement was observed for unordered rule sets,
other than that the size of the resulting rule set was
reduced.

There are number of open questions that deserve fur-
ther study. One is why post-processing of unordered
rule sets did not lead to any improvements. This in-
cludes explaining why the estimated AUC often mis-
lead the post-processing procedure to remove rules,
that actually would have been beneficial. More robust
estimation methods or post-processing criteria may be
helpful. Another direction for future work is to to in-
vestigate alternative ways of post-processing the gen-
erated rules, e.g. by also considering replacement rules.

Precision and lift were estimated by the relative fre-

quencies in the prune sets, while Laplace correction
was used to form the class distributions of each rule.
It has not been investigated whether using some cor-
rection when estimating the former two actually would
lead to any improvement, and whether some alter-
native to Laplace, e.g., the m-estimate (Cestnik &
Bratko, 1991) would be beneficial w.r.t. AUC.
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