
Pruning and Exclusion Criteria for
Unordered Incremental Reduced Error Pruning

Henrik Boström

Department of Computer and Systems Sciences,
Stockholm University and Royal Institute of Technology,

Forum 100, 164 40 Kista, Sweden
henke@dsv.su.se

and
Compumine AB
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Abstract. Incremental reduced error pruning is a technique that has
been extensively used for efficient induction of ordered rule sets (deci-
sion lists). Several criteria have been developed regarding how to prune
rules and whether or not to exclude generated rules. A version of incre-
mental reduced error pruning for unordered rule sets is presented, and
the appropriateness of previously proposed criteria for the novel version
is investigated. It is shown that when inducing unordered rule sets, where
a Bayesian framework is used to combine predictions from multiple rules,
previously proposed criteria could lead to exclusion of possibly beneficial
rules as well as to inclusion of harmful rules. Two alternative criteria are
introduced, one based on the likelihood ratio and one based on the mar-
gin. An empirical evaluation on 34 datasets shows that the novel criteria
significantly outperform previously employed criteria when using incre-
mental reduced error pruning for unordered rule sets, the margin-based
being slightly ahead of the likelihood ratio criterion.

1 Introduction

Separate-and-Conquer (or covering) has been a popular method for inducing sets
of classification rules during the last decades [10]. This method has been used for
generating two main types of classifier: ordered rules sets (also known as decision
lists [17]) and unordered rule sets. The former has the advantage of requiring
only a simple inference mechanism (i.e., the first applicable rule is employed),
while the latter requires some way to combine predictions from multiple rules
(e.g., using class counts as in [4] or a more sophisticated scheme as in [14, 15]).
On the other hand, an unordered rule set allows for interpreting each generated
rule independently of other rules, while rules within an ordered rule set cannot
be taken out of context, since the class distribution for a particular rule in an
ordered set is dependent on preceding rules. Hence, multiple rules have only
to be considered during classification for unordered rule sets, and not during



interpretation of each generated rule, in contrast to ordered rule sets, for which
multiple rules have to be considered in both cases.

One of the shortcomings of separate-and-conquer is its quadratic time com-
plexity compared to the linear time complexity of the divide-and-conquer (or
recursive partitioning) strategy [2].1 However, with the advent of a technique
known as incremental reduced error pruning (IREP) [12], by which each rule is
immediately pruned after its generation, substantially larger training sets could
be handled by separate-and-conquer within reasonable time (the computational
cost is still d×n, where d is the number of rules and n is the number of examples,
but typically d � n when using IREP, while d may approach n without IREP,
especially in difficult domains). Methods for employing IREP for ordered rule
sets have received considerable attention [12, 6, 9, 8], while IREP for unordered
rule sets has so far received no attention in the literature.2

A number of criteria for deciding how to prune generated rules and for de-
ciding whether or not to exclude a generated rule when using IREP for ordered
sets of rules have previously been proposed and evaluated [12, 6, 9]. In this work,
we study their usefulness for unordered rule sets and propose alternative crite-
ria that are motivated by a Bayesian framework, which is used for combining
predictions from multiple rules.

In the next section, we first recall the Bayesian framework and then describe
the previous criteria for ordered rule sets. In section three, we present an adapted
version of IREP for unordered rule sets, point out some weaknesses of previous
criteria when used in this setting, and present two novel criteria. These are in
section 4 compared empirically to previous criteria that have been proposed for
ordered rule sets. Finally, we give some concluding remarks in section 5.

2 Previous Work

2.1 Combining Predictions from Multiple Rules

There have been several proposals for how to combine predictions from multiple
rules [4, 14, 15]. One natural, and computationally inexpensive, way of combining
predictions made by multiple rules is to choose the most probable class according
to Bayes’ theorem3:

P (C|R1 ∧ . . . ∧Rn) = P (C)
P (R1 ∧ . . . ∧Rn|C)
P (R1 ∧ . . . ∧Rn)

1 The number of steps by which a rule can be specialized is here assumed to be bounded
by a constant, in contrast to the derivation of Ω(n2 log n) for separate-and-conquer
in [5].

2 Methods for applying rules generated by IREP for unordered rules have however been
studied [7, 14, 15] and the system RIPPER, which was introduced in [6], includes an
option for also generating unordered rule sets that has not been described in the
literature.

3 The use of Bayes’ theorem for this purpose appears to have been first described in
[7], when referring to a system of the second author.



where C is a class label and R1, . . . , Rn are the rules that cover the example to
be classified. Since P (R1∧ . . .∧Rn) is constant for all possible class labels, it can
be ignored. Furthermore, since it is normally very hard to get a good estimate
of P (R1 ∧ . . . ∧ Rn|C), we adopt the commonly made (näıve) assumption that
P (R1 ∧ . . . ∧Rn|C) = P (R1|C) . . . P (Rn|C).

In order to avoid that a single rule cancels out the probability for some class,
we adopt the following estimate for each probability P (Ri|C): We assume that
each rule, in addition to the examples actually covered, also covers a fraction of
an imagined example from each class, where the fraction is determined by the a
priori probability of the class4. More formally:

P (R|C) =
|Covers(R,EC)|+ |EC |/|E|

|EC |+ |EC |/|E|

where Covers(R,E) denotes the subset of E covered by R, and EC denotes the
subset of all examples E that belong to class C.

2.2 Pruning and Exclusion Criteria for Ordered Rule Sets

In the seminal paper on incremental reduced error pruning [12], two variants of
the algorithm were studied, I-REP and I-REP-2. I-REP uses a pruning criterion
that maximizes the overall accuracy p+(N−n)

P+N , where p and n are the number
of positive and negative examples covered by the current rule out of totally P
positive and N negative in the current pruning set.5 I-REP does not include the
best pruned rule if the overall accuracy of the rule is below N

N+P (which would
be the overall accuracy of a default rule). It should be noted that the original
algorithm actually stops once such a rule has been generated, and this criterion
is consequently often referred to as a stopping condition. However, since it is not
necessary to stop because of the most recent generated rule should be excluded
(which is explained in section 3), we refer to such a criterion as an exclusion
criterion.

I-REP-2 prunes rules by maximizing the “purity” p
n+p and excludes a rule

whenever this value is less or equal to 0.5 (otherwise, the rule would introduce
more errors than correct classifications). In [12], I-REP was found to gener-
ate more accurate classifiers than I-REP-2. It was later realized in [6] that the
pruning criterion of I-REP could lead to occasional failures (e.g., it prefers a
rule that covers 2000 positive and 1000 negative examples to a rule that covers
1000 positive and 1 negative examples), and an alternative pruning criterion was
proposed: p−n

p+n .
In order to avoid premature stopping (i.e., when the last generated rule is

of low accuracy, but there are still some remaining positive examples to be
covered), an MDL scheme was used in [6] to allow the addition of rules that

4 This corresponds to using an m-estimate [3] with m = 1.
5 Note that incremental reduced error pruning for ordered rule sets not only removes

covered examples from the growing set, but also from the pruning set.



actually increase error up to a certain user defined threshold6, which in turn
allows possibly good rules to be found subsequently. This procedure requires
that harmful rules are removed at a later stage (in [6], a rule is considered
harmful if it increases the total description length). An implementation of IREP
with this criterion together with the proposed pruning criterion and subsequent
post-processing, called IREP*, was shown to significantly outperform previous
versions of IREP. The algorithm RIPPER (also presented in [6]) combines IREP*

with an additional post-processing stage, by which replacements for each rule
are investigated (both by inducing entirely new rules and by specializing the
rules further).

3 IREP for Unordered Rule Sets

In this work, we focus on the main IREP procedure7 and how to adapt it to
induction of unordered rule sets. We start by outlining the general procedure
and discuss the differences to the original IREP algorithm. Then we investigate
whether the previously proposed pruning and exclusion criteria for ordered rule
sets also are useful for unordered sets of rules, assuming that the Bayesian frame-
work presented in the last section is used. Finally, we suggest two alternative
criteria motivated by this framework.

3.1 The Algorithm

The main algorithm for incremental reduced error pruning for unordered rules
sets, called U-IREP, is shown in Fig. 1.

There are a number of differences between U-IREP and IREP as defined in
[12, 6]. The most important difference is that each rule generated by U-IREP

can be interpreted independently of the other rules, since the class distribution
associated to each rule is independent of previously generated rules. This does
however not mean that each rule is generated independently of previous rules.
In fact, each rule is generated from the remaining examples to be covered in
the grow set, but pruned using a fixed prune set, from which no examples are
removed. Hence, decisions of how to prune and whether or not to exclude a
generated rule are made independently of previously generated rules.

Furthermore, U-IREP generates rules for all classes (in no particular order)
using examples from all other classes as negative examples when generating rules
for a class, while IREP generates rules for classes in a specific order, where all
examples covered by rules defining one class are ignored when generating rules
for subsequent classes.8

6 More correctly, the encoding of the rules and classifications is allowed to grow up to
a specified number of bits.

7 Hence post-processing of generated rules is not considered, e.g., as done in IREP*
and RIPPER [6].

8 Only two classes are handled by IREP in its original formulation, where the second
class is used as a default class, while in its extended version in [6], rules for multiple
classes are generated in sequence.



function U-IREP(Classes,Examples)
Rules := ∅
Make stratified split of Examples into GrowSet and PruneSet
for each Class ∈ Classes do

Pos := {e : e ∈ GrowSet ∧ Class(e) = Class}
Neg := GrowSet \ Pos
while Pos 6= ∅ do

Rule := GrowRule(Pos, Neg)
Rule := PruneRule(Rule, PruneSet)
if not Exclude(Rule, PruneSet) then Rules := Rules ∪ {Rule}
Pos := Pos \ Covers(Rule, Pos)

return Rules

Fig. 1. The U-IREP algorithm.

Finally, instead of stopping the generation of rules when the pruned rule is
considered harmful, as done in original IREP, we have chosen to simply ignore
the generated rule and remove the examples covered by the rule. This allows for
avoiding premature stopping so that rules can be generated from the remaining
uncovered examples, without having to incorporate bad rules that need to be
dealt with in a post-processing stage (like in IREP*). This alteration is however
not required for unordered rule sets, and the more hasty approach of original
IREP may be used instead.

3.2 Some Potential Weaknesses of Previous Criteria

Previously proposed exclusion criteria (e.g., using the threshold N
N+P as in I-REP

or 1
2 as in I-REP-2) do not reflect whether or not the generated rule contributes

positively to the current class in relation to other classes in the Bayesian frame-
work. For example, consider a rule that covers 10 examples out of totally 200
examples of class A together with 5 examples out of totally 50 examples of an-
other class B. The previous criteria would consider this to be a good rule for class
A, since both the overall accuracy 10+(50−5)

200+50 exceeds the threshold of 50
250 and

the purity 10/15 exceeds the threshold of 1/2. However, this rule actually gives
the highest preference to class B when used in the Bayesian setting, since when
applied, the likelihood ratio between B and A is multiplied by 5/50

10/200 = 2.0. This
means that both these criteria would allow the inclusion of a rule generated for
one class that actually contributes more to another class. Put in other words,
they allow rules to be included that are harmful for those examples for which
they were generated. Moreover, consider the same rule generated for class B.
This rule would not be included if any of the previous criteria were employed,
since both the overall accuracy 5+(200−10)

200+50 falls below 200
250 and the purity 5/15

falls below 1/2. However, as shown above, this rule actually contributes positively



to the correct class for those examples from which it was generated. Hence, a
rule that contributes strongly to a class does not have to be accurate.

Furthermore, previously suggested pruning criteria for decision lists are all
local in the sense that they evaluate rules based on their coverage of positive and
negative examples without considering the original class distribution. This is the
case for I-REP since maximizing p+(N−n)

P+N is equivalent to maximizing p−n (since
P and N are constant for all candidates in a set of rules obtained by pruning
some rule), as shown in [11]. This is also obvious for the pruning criterion of
I-REP-2 which maximizes the fraction p

n+p , and for the criterion p−n
p+n used by

IREP*, which was proposed as an improvement over the one used in I-REP.
It turns out that maximizing the criterion of IREP* is in fact equivalent to
maximizing the criterion of I-REP-2, which was pointed out in [18, p.180], since

p− n

p + n
=

p

p + n
− n

p + n
=

p

p + n
− (1− p

p + n
) = 2

p

p + n
− 1

3.3 Two novel criteria for unordered rule sets

Instead of comparing the accuracy to a fixed threshold when deciding on the
inclusion or exclusion of a generated rule, one could base the decision on whether
the likelihood increases or not. This objective is similar in spirit to the commonly
employed weighted information gain criterion [13] used for growing rules within
separate-and-conquer, which does not evaluate candidates based on the overall
accuracy, but on how much examples belonging to the current class gain from the
rule (i.e., potential loss for examples belonging to other classes is only indirectly
considered).

For a given class C, we may calculate the likelihood ratio between a rule R to
be evaluated and a (default) rule D that covers all examples (i.e., P (D|C) = 1):

Likelihood Ratio To Default(R,C) =
P (C|R)
P (C|D)

=
P (R|C)
P (R)

This ratio is greater than 1 whenever the rule increases likelihood for the
given class compared to the default rule. When this ratio is less than 1, it means
that the likelihood actually decreases. Since the default rule corresponds to the
most general rule that can be obtained by pruning any rule, it follows naturally
that the likelihood ratio must be greater than 1 in order for a rule to be kept
(otherwise, we would always allow including the default rule). Hence, we propose
this as an exclusion criterion. Furthermore, this ratio may also be used as a
pruning criterion, and it turns out that it is actually equivalent to the one used
by I-REP-2 and IREP*, except that an m-estimate with m = 1 is employed here
(see section 2.1).

Considering the same example as above, where we have a rule that covers 10
examples of class A (out of totally 200 examples belonging to that class) together
with 5 examples of another class B (out of totally 50 examples), we find that
the likelihood ratio to the default for class A is 0.83, while for class B it is 1.66.
Hence, as opposed to the previous criteria, this rule would be excluded if it was



generated for class A, while it would be included if it was generated for class B,
again in contrast to the previous criteria that would exclude the rule.

It may seem counter-intuitive that the same rule at one point in time is con-
sidered harmful, and at another point in time is considered beneficial. However,
since the examples that are used to grow a rule for a given class are removed, it
means that if the likelihood for the class is decreased, there may be no chance
to repair this. Decreasing the likelihood of examples belonging to other classes
than the one for which rules currently are generated could on the other hand
be affordable, since rules will be (or already have been) generated that increase
their likelihood.

As pointed out in the previous section, one reason for excluding an accurate
rule is that it contributes more to another class than for which it was generated.
The above criterion only guarantees that such a rule is excluded in case there are
two classes. When there are more than two classes, some other class may gain
more from adding the generated rule, even if the likelihood ratio to default is
greater than one for the current class. For example, a rule generated for class A
that covers 30 examples of that class out of totally 100, 0 examples of class B out
of totally 200 and 70 examples of class C out of totally 100, would be included
by the likelihood ratio criterion, but would obviously give a higher likelihood
to class C. Hence, the examples for which it was generated actually suffer from
adding the rule.

One alternative to looking only for an increase of likelihood relative to the
class itself, is to look at the likelihood of the current class in relation to the
most likely other class. Instead of just investigating whether the difference in
likelihood is positive for the generated rule (like previously proposed criteria
do), it can be checked whether the difference grows or shrinks compared to the
difference in likelihood for the default rule. If this difference increases, then the
rule can be considered to contribute to the current class.9 More formally10:

Margin Increase(R,C) = (P (C|R)− P (C ′|R))− (P (C|D)− P (C ′′|D))

where R is the evaluated rule, C is the current class, C ′ is a class different from
C that maximizes P (C ′|R) and C ′′ is a class different from C that maximizes
P (C ′′|D), where D is the default rule. Note that the most likely other class may
not be the same for the investigated rule and the default rule and hence two
different class labels, C ′ and C ′′, are used.

We may use this both as a pruning criterion (i.e., maximizing the margin
increase) and as an exclusion criterion (i.e., excluding a rule whenever the margin
increase is not positive). The rule in the previous example would be excluded by
the latter criterion, in contrast to the likelihood ratio criterion, since the margin
increase actually is negative for class A.
9 Considering the ratio instead of difference when relating the likelihood of the current

class and the most likely other class would give a rather different criterion, that would
favor relative, rather than absolute, improvements.

10 We have adopted the term margin from [16], in which it was used to explain the
effectiveness of boosting.



4 Empirical Evaluation

In this section we present an empirical comparison of the novel criteria to the pre-
viously proposed when generating unordered rule sets with incremental reduced
error pruning. We first describe the methods and methodology used together
with the hypotheses to be tested, and then present the results.

4.1 Experimental Setting

Methods The methods that are to be compared are all variants of the U-

IREP algorithm using different pruning and exclusion criteria. Besides the novel
criteria, which can be used for both pruning and exclusion as explained in section
3.3, we also consider combinations of the pruning criteria of I-REP, I-REP-2 and
IREP* (of which the two latter were shown to be equivalent) and the exclusion
criteria used in I-REP and I-REP-2 (which also are equivalent). In addition to
evaluating the previous criteria in the Bayesian framework, we also test these in
conjunction with using a single rule with the highest precision to classify test
examples, which is the method employed by RIPPER when inducing unordered
rule sets.11

The employed methods are summarized in Table 1. U-IREP and the above
criteria and inference methods were implemented and compared within the Rule
Discovery System12, which incorporates other rule induction algorithms as well
and is capable of handling numerical features and missing values. We employ
the default setting of using 2/3 of the training examples for growing rules, and
1/3 for pruning, and all methods are given the same grow and prune sets.

Table 1. Employed Criteria and Inference Methods for U-IREP

Acronym Pruning criterion Exclusion criterion Inference method

LD Likelihood ratio to default ≤ 1 Bayes’

MI Margin increase ≤ 0 Bayes’

I p− n p/(p + n) ≤ 1/2 Bayes’

R p/(p + n) p/(p + n) ≤ 1/2 Bayes’

IS p− n p/(p + n) ≤ 1/2 Single rule

RS p/(p + n) p/(p + n) ≤ 1/2 Single rule

11 The precision is estimated using Laplace correction: p+1
p+n+2

12 Rule Discovery System (1.0), http://www.compumine.com, Compumine AB. A li-
cense for academic purposes may be obtained at no cost.



Methodology and data sets We decided to choose a large set of data sets
and compare variants of U-IREP using ten-fold cross validation. The motivation
for using cross-validation is to keep the number of test examples as high as
possible (which in this case are all examples in the data set), in order to allow for
detecting significant differences in accuracy for pairwise comparisons. For large
data sets this may not be required, but was nevertheless used here. McNemar’s
test was used for investigating whether any observed difference in accuracy could
be considered as due to chance (a p-value lower than 0.05 was here considered
significant).

We selected 34 data sets from the UCI Repository [1], which all concern
classification tasks, some of which containing more than 20 classes. The names
of these data sets together with the number of classes are listed in the results
section.

Test hypotheses For each pair of methods, the null hypothesis is that the
probability of one method performing significantly better on a data set than
another (i.e., has a higher accuracy and the difference in accuracy is statistically
significant according to McNemar’s test) equals the probability that the other
method is significantly better than the first.

4.2 Experimental Results

In Table 2, we list the mean accuracies from ten-fold cross validation for all
methods on all data sets. A suffix i for an accuracy indicates that the method
performs significantly worse than the ith method (according to McNemar’s test).
In Table 3, we show the number of significant wins and losses for each pair of
method, together with the p-value of obtaining that result if the null hypothesis
holds (i.e., there is no difference between the methods).

From Table 3, it follows that all eight null hypotheses concerning the com-
parison of a novel and a previous method (i.e., saying that there is no difference
between the novel and the previous method) can be rejected with high confi-
dence (the highest p-value for the likelihood criterion when compared to pre-
vious methods is 0.0215, and for the margin-based it is 0.00195). Hence, there
is strong evidence that in cases for which the difference in accuracy is unlikely
due to chance, both novel criteria are expected to outperform any of the pre-
vious criteria. Considering all observed differences in accuracy (including those
that not unlikely are due to chance variation), there is still strong evidence for
rejecting the corresponding null hypotheses for the margin-based criterion (the
highest p-value is 0.029), while the evidence for rejecting the corresponding null
hypotheses for the likelihood ratio criterion is weaker (the highest p-value is
0.136).

Although the results point in favor of the margin-based criterion over the
likelihood ratio criterion, the null hypothesis that relates the two novel methods
can not be rejected. It should also be noted that the two novel criteria behave
identically for all binary classification tasks, as pointed out in section 3.3.



Table 2. Accuracies on 34 UCI data sets.

Data set LD MI I R IS RS

audiology (24 cl.) 66.50 65.50 64.00 63.00 62.50 61.501

balance-scale (3 cl.) 83.52 84.00 85.44 84.16 78.8812346 83.84

breast-cancer (2 cl.) 70.63 70.63 70.63 70.63 70.28 70.28

breast-cancer-wisconsin (2 cl.) 96.28 96.28 96.28 95.99 93.281234 93.711234

car (4 cl.) 93.11 92.53 81.3112 82.8712 77.2012346 80.38124

cleveland-heart-disease (5 cl.) 50.83 51.49 53.80 54.13 54.13 54.13

crx (2 cl.) 84.18 84.18 73.4412 75.0412 74.1712 75.0412

cylinder-bands (2 cl.) 66.8556 66.8556 66.6756 66.6756 68.15 68.15

dermatology (6 cl.) 87.98 88.25 88.80 88.80 89.07 89.07

ecoli (8 cl.) 76.493 76.19 79.17 76.79 75.003 74.7034

glass (6 cl.) 59.35 59.35 56.54 58.41 56.54 58.41

hepatitis (2 cl.) 81.94 81.94 83.23 81.29 79.35 80.65

house-votes (2 cl.) 96.09 96.09 94.94 95.40 92.1812346 94.2512

image-segmentation (7 cl.) 73.81 75.71 75.71 75.71 74.76 75.24

ionosphere (2 cl.) 90.00 90.00 88.86 90.00 89.14 89.71

iris (3 cl.) 94.00 94.67 94.67 94.67 95.33 95.33

kr-vs-kp (2 cl.) 93.34 93.34 89.3312 87.171235 89.2412 87.201235

lung-cancer (3 cl.) 38.71 41.94 41.94 41.94 38.71 38.71

lymphography (4 cl.) 78.38 78.38 76.35 75.00 77.03 77.03

mushroom (2 cl.) 100.00 100.00 99.321246 100.00 98.6312346 100.00

new-thyroid (3 cl.) 91.63 91.63 93.95 91.63 92.56 89.7735

pima-indians-diabetes (2 cl.) 71.35 71.35 68.88 68.4912 68.10123 67.9712

post-operative-patients (3 cl.) 68.89 68.89 68.89 70.00 68.89 70.00

primary-tumor (21 cl.) 42.77 41.89 39.82 38.94 39.53 38.64

promoters (2 cl.) 72.38 72.38 63.81 64.76 63.81 64.76

sick-euthyroid (2 cl.) 97.19 97.19 93.5212 93.1112 92.73123 92.95123

soybean-large (19 cl.) 81.76 82.41 79.482 78.832 76.55123 77.5212

spambase (2 cl.) 86.37 86.37 84.7912 82.661235 84.7612 82.591235

spectf (2 cl.) 84.24 84.24 76.7912 76.7912 76.2212 76.2212

splice (3 cl.) 73.72 73.50 61.7712 60.681235 61.8412 60.551235

tae (3 cl.) 35.33 35.33 36.67 37.33 36.00 36.67

tic-tac-toe (2 cl.) 97.39 97.39 83.301246 98.02 85.701246 98.33

wine (3 cl.) 92.13 92.13 92.13 92.13 91.57 91.57

yeast (10 cl.) 54.45 54.85 54.45 52.7025 54.65 52.96



Table 3. Significant wins/losses and corresponding p-values for all pairs of methods.

LD MI I R IS RS

LD - 0/0 (1.00) 9/1 (2.15e-02) 8/0 (7.81e-03) 14/1 (9.77e-04) 12/1 (3.42e-03)

MI 0/0 (1.00) - 10/0 (1.95e-03) 10/0 (1.95e-03) 14/1 (9.77e-04) 11/1 (6.35e-03)

I 1/9 (2.15e-02) 0/10 (1.95e-03) - 3/2 (1.00) 9/1 (2.15e-02) 7/3 (3.44e-01)

R 0/8 (7.81e-03) 0/10 (1.95e-03) 2/3 (1.00) - 6/5 (1.00) 3/1 (6.25e-01)

IS 1/14 (9.77e-04) 1/14 (9.77e-04) 1/9 (2.15e-02) 5/6 (1.00) - 4/5 (1.00)

RS 1/12 (3.42e-03) 1/11 (6.35e-03) 3/7 (3.44e-01) 1/3 (6.25e-01) 5/4 (1.00) -

Table 4. Summary of all wins/losses and corresponding p-values for all pairs of meth-
ods.

LD MI I R IS RS

LD - 5/8 (5.81e-01) 19/10 (1.36e-01) 19/10 (1.36e-01) 24/8 (7.00e-03) 23/9 (2.01e-02)

MI 8/5 (5.81e-01) - 20/7 (1.92e-02) 19/7 (2.90e-02) 27/6 (3.24e-04) 26/7 (1.32e-03)

I 10/19 (1.36e-01) 7/20 (1.92e-02) - 15/11 (5.57e-01) 21/10 (7.08e-02) 21/12 (1.63e-01)

R 10/19 (1.36e-01) 7/19 (2.90e-02) 11/15 (5.57e-01) - 23/10 (3.51e-02) 21/7 (1.25e-02)

IS 8/24 (7.00e-03) 6/27 (3.24e-04) 10/21 (7.08e-02) 10/23 (3.51e-02) - 9/16 (2.30e-01)

RS 9/23 (2.01e-02) 7/26 (1.32e-03) 12/21 (1.63e-01) 7/21 (1.25e-02) 16/9 (2.30e-01) -

5 Concluding Remarks

A formulation of incremental reduced error pruning for unordered sets of rules
has been presented. We have investigated the usefulness of previous pruning and
exclusion criteria for ordered rule sets in this novel setting, where a Bayesian
framework for combining predictions from multiple rules has been assumed. We
have pointed out some potential draw-backs of previous criteria that may cause
possibly beneficial rules to be exluded as well as harmful rules to be included.
Motivated by the Bayesian framework, two novel criteria for both pruning and
exclusion have been introduced, one based on the likelihood ratio and the other
on the margin. An empirical evaluation on 34 datasets from the UCI repository
shows that both novel criteria significantly outperform previous criteria devel-
oped for ordered rule sets, and that the margin-based approach is slightly ahead
of the likelihood ratio criterion.



There are a number of possible directions for further research that deserve
attention. As has been shown for ordered rule sets (e.g., by IREP* and RIPPER),
post-processing of generated rules (e.g., to remove rules based on some global
criterion) may significantly improve accuracy (although, as pointed out in [8],
existing methods to do this for ordered rule sets are both complex and heuristic).
Related to this is the question of how to adapt the MDL-framework of IREP*

and RIPPER to unordered rules.
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