Induction of Recursive Transfer Rules

Henrik Bostrom
Dept. of Computer and Systems Sciences
Stockholm University
Electrum 230, 164 40 Kista, Sweden
henke@dsv.su.se

Abstract

Transfer rules are used in bi-lingual translation systems for transfer-
ring a logical representation of a source language sentence into a logical
representation of the corresponding target language sentence. This work
studies induction of transfer rules from examples of corresponding pairs
of source-target quasi logical formulae (QLFs). The main features of this
problem are: i) more than one rule may need to be produced from a sin-
gle example, ii) only positive examples are provided and iii) the produced
hypothesis should be recursive. In an earlier study of this problem, a
system was proposed in which hand-coded heuristics were employed for
identifying non-recursive correspondences. In this work we study the case
when non-recursive transfer rules have been given to the system instead
of heuristics. Results from a preliminary experiment with English-French
QLF's are presented, demonstrating that this information is sufficient for
the generation of generally applicable rules that can be used for transfer
between previously unseen source and target QLFs. However, the exper-
iment also shows that the system suffers from producing overly specific
rules, even when the problem of disallowing the derivation of other target
QLFs than the correct one is not considered. Potential approaches to this
problem are discussed.

1 Introduction

In transfer-based translation, source language input is first analysed resulting
in a logical representation of the (preferred) meaning of the input utterance.
Next, the source logical formula is transferred into a logical representation in
the target language. Finally, the such obtained logical formula is then used
for generating the target text. FEach language is processed with its specific
morphology, grammar, lexicon, etc., with the transfer being the only bridge
between them. The Spoken Language Translator (SLT) [2] is a transfer-based
translation system, that is based on the Core Language Engine (CLE) [1] for

mapping between natural language phrases and (quasi) logical formulas (QLF's).
It uses so-called transfer rules for the mapping between source and target QLFs.

A transfer rule specifies a pair of logical form patterns, where the first pat-
tern represents a form in one language and the second pattern represents a form
in the other language. The patterns can include so-called transfer variables
showing the recursive correspondence between parts of the matching logical
forms. Many transfer rules are only responsible for transferring word senses,
e.g. trule(leave_Depart,partir_Leave), while others, the so-called struc-
tural transfer rules, are more complex, e.g. the following rule, which is taken
from [8]%:

trule([stop_ComeToRest,A,S1],
[faire_Make,A,S2,term(q(_,bare,sing),_,
X~ [escale_Stop,X]1)]1):-
trule(S1,52).

Transfer rules are applied recursively, and this process follows the recur-
sive structure of the source QLF. Normally, the transfer rules are hand-crafted
through inspection of a set of non-transferable QLF pairs. Their creation is a
tedious and time-consuming task. The main problem addressed in this work is
how to use inductive logic programming (ILP) techniques for automatic deriva-
tion of transfer rules from examples of corresponding QLF pairs, such as:

qlf_pair([imp, form(_,verb(no,no,no,imp,y),A,
B~ [B, [1ist_Enumerate,A,
term(_,ref (pro,you,_,1([1)),_,
C~ [personal,Cl,_,_),
term(_,q(_,bare,plur),_,
D~ [fare_Price,D],_,_)11,.)1,
[imp, form(_,verb(impera,no,no,impera,y),E,
F~[F, [indiquer_Show,E,
term(_,ref (pro,vous,_,1([1)),G,
H" [personal,H],_,_),
term(_,ref (def,le,plur,1([G-_1)),_,
I [tarif_Fares,I],_,_)11,_.01).

The main features of this problem are:
e More than one rule may need to be produced from a single example.
e Only positive examples are provided.

e The produced hypothesis should be recursive.

IThe reader is assumed to be familiar with logic programming terminology [7] and standard
Edinburgh syntax for logic programs [5].

The first problem is significant as most ILP systems (e.g. Progol [10] and
FOIL [12]) produce at most one clause per example. We have developed one
approach to this problem, a system called TRL (Transfer Rule Learner) [4],
which works in three steps: first, it tries to identify non-recursive correspon-
dences between the source and target QLFs, second, it generates a set of as
general clauses as possible for each example and third, it specialises the clauses
so that for each source QLF exactly one target QLF can be generated (cf. output
completeness [9]).

In the previous work, the system relied on elaborated, hand-coded heuristics
for the first step. In this work we assume no such heuristics, but instead assume
that the non-recursive transfer rules are known, and hence the task is to induce
the recursive rules (initial work on inducing non-recursive transfer rules is de-
scribed in [8]). In the next section, we present the basic algorithm used in TRL
for solving this task. In section three, we present results from a preliminary
experiment on learning transfer rules from English-French QLF pairs and point
out some major difficulties that are revealed by this experiment. In section four
we give some concluding remarks and discuss some possible directions for future
work.

2 The Transfer Rule Learner

Given a set of pairs of input-output terms (QLF pairs), the rule generating com-
ponent of TRL produces a set of clauses such that for each input term, (a variant
of) the corresponding output term can be derived (the problem of excluding the
derivation of other terms than the output term is assumed to be handled later
by the rule specialisation component). The rule generating component is based
on the following assumptions: i) there is some way to find a bijection from sub-
terms in each input term to sub-terms in the corresponding output term that
corresponds to all sub-terms that should be non-recursively transferred ii) only
one (recursive) predicate is needed in the produced hypothesis, and iii) both
arguments in the head of each clause produced must be compound (this ensures
that the hypothesis terminates for all input).

Given an example pair, the objective of the rule generating component is to
find rules that will transfer the source term into the target, and that these rules
are as general as possible in order to cover as many similar cases as possible. To
be able to achieve this, the corresponding terms should be distributed among
several clauses, where each clause will be applicable to transferring (sub-)terms
of QLF pairs. Since it is computationally infeasible to decide how to distribute a
pair of terms between clauses such that a most general hypothesis is obtained, a
greedy strategy is adopted: rules are generated in a top-down fashion (i.e. in the
same order as they will be applied when deriving the target from the source), and
each generated rule is a most general rule for the corresponding input-output
pair (i.e. a rule with the most general head such that when instantiated with the

input-output pair, the literals in the body correspond to input-output pairs for
which transfer rules can be generated, i.e there are no variable connections to
other literals or to the head (except for literals containing just a pair of transfer
variables, which should have connections with the head only). It should be
noted that there is always a unique clause with this property.).

In Figure 1 we show the rule generating component of TRL, that given an
input-output pair, where sub-terms that should be non-recursively transferred
have been replaced by transfer variables, generates a set of transfer rules that is
as general as possible while still being able to recreate (a variant of) the output
term from the input term. The function, called Find-Transfer-Rules, takes as
input the input-output pair, a set of transfer variable pairs and a (initially
empty) set of transfer rules that has been produced previous to the call.

function Find-Transfer-Rules(f(s1,...,8m),9(t1,...,tn), V, H)
R = {trule(f(z1,.. ,Zm),9(W1,- -, Yn)}
Os :={x1/s1,...,Zm/sm} and O :={y1/t1,...,Yn/Yn}

repeat
if there is a term s = x;/ f;(u1,...,ug) € s(f71), such that some
variable in g, ..., us occurs in R or 8s(6) \ {s} or there are two

distinct terms ¢; and ty in 67(fs), where ¢; contains wy and to contains
wy such that {{vy, w1}, {ve, ws}} CV for some variables v; and v9
in s then
Os(07) :=05(07) \ {s} U{z1/u1,... 21 ur}
R := R{z;/fi(z1,...,21)} else
if there is a pair (s,t), where s = 2;/u; € s,t =y;/v; € 07, and
{u;,vj} € V then
R := RU {«+ trule(z;,y;)}, 8s :==0s \ {s}, and 67 := 67 \ {t}
else if there is a pair (s,t), where s = ;/s; € 0g,t = y;/t; € b1,
s; is compound and contains u;, ¢; is compound and contains v;,
where {u;,v;} € V then
R := RU {«+ trule(z;,y;)}, 0s :=0s \ {s}, and b7 := 07 \ {t}
H := Find-Transfer-Rules(s;,t;,V, H) else
R := R059T and 05 = 0T = @
until 0 =07 =10
return H U {R}

Figure 1: The function for finding recursive transfer rules.

An example

Assume the following is given as input to the algorithm Find-Transfer-Rules:
the input term s(£(V1,V2),g(V3)), the output term t (h(W3) ,W2,W1) and the
set of transfer variable pairs V = {{V1,w1}, {V2,w2}, {v3,w3}}. Then the ini-
tialisation steps result in the following:

R = trule(s(X1,X2),t(Y1,Y2,Y3)).
fs = {X1/£(V1,V2), X2/g(V3)}
7 = {Y1/h(W3), Y2/W2, Y3/W1}

Since the transfer variables V1 and V2 that occur in the first term in g corre-
spond to transfer variables (W1 and W2) that occur in two different terms in 67,
it follows from the first if-statement that X1 is substituted by a term f (X3,X4)
in R, and that the terms X3/V1 and X4/V2 replace the first term in fg:

R = trule(s(f(X3,X4),X2),t(Y1,Y2,Y3)).
0s = {X3/V1, X4/v2, X2/g(V3)}
07 = {Y1/h(W3), Y2/W2, Y3/W1}

Now, according to the second if-statement, two recursive calls are added to
R in turn, subtracting X3/V1 from fg and Y3/W1 from 07 after having added
the first recursive call, and subtracting X4/V2 from 8g and Y2/W2 from 67 after
having added the second recursive call:

R =trule(s(f(X3,X4),X2),t(Y1,Y2,Y3)):- trule(X3,Y3), trule(X4,Y2).
fs = {X2/g(V3)}
O = {Y1/h(W3)}

Following the third if-statement, a third recursive call trule(X2,Y1) is added
to R, resulting in the following rule that is included in H:

trule(s(f(X3,X4),X2),t(Y1,Y2,Y3)):-
trule(X3,Y3), trule(X4,Y2), trule(X2,Y1).

The algorithm Find-Transfer-Rules is then invoked recursively with the sub-
terms g(V3) and h(W3) as input, resulting in the following rule that also is
included in H:

trule(g(X),h(Y)):- trule(X,Y).

3 An Experiment

3.1 Experimental Data

540 English-French QLF pairs have been obtained from SRI-Cambridge. These
were formed by running the SLT system which has accuracy of over 95% on the
ATIS 2 corpus. Just one target QLF was generated for each source QLF. The
system uses statistical methods to choose the best QLF which is both a good
French sentence and a good translation of the original (according to weighted
transfer rules).

In addition, the set of non-recursive transfer rules used by SLT was obtained
from SRI as well, consisting of 1155 rules. These were used in the following way.

For each QLF pair, a bijection from a set of subterms in the source to a
set of subterms in the target was formed using the non-recursive rules, and
the corresponding subterms were replaced by transfer variables. Note that not
all pairs of subterms for which there is a matching non-recursive rule can be
replaced by transfer variables, due to that the same subterm may go into several
subterms on the opposite side and due to that variable connections might get
lost (i.e. some variable occurs both inside and outside the subterm) - in these
cases the subterms were left unchanged.

The induced rules were in the current experiment forced to be on the follow-
ing form: either the functor and arity of the source and target QLF should be
identical, or the source should be a list with two elements and the target have
the functor form and arity 5 or vice versa. This turned out to work better than
allowing any form of the rules.

3.2 Experimental Results

Subsets of the set of pairs in which transfer variables have been introduced were
given as input to TRL? (except for 40 pairs that were leaved out for testing).
The rules produced by the system were then tried on the test set, and it was
checked whether the first target QLF produced for each (test) source QLF, was
a variant of the correct (test) target QLF (the rules were tested in the same
order as they were generated). It was also checked whether the correct target
QLF could be produced at all. The performance was compared to just storing
the pairs that were given as input (which still are more general than the original
set of QLF pairs as e.g. lexical items have been replaced by transfer variables).

Average results from running the experiment 10 times are summarised in
Table 1. The number of examples given as input to TRL is shown in the first
column. The coverage, measured as the fraction of the test set for which the
target QLF can be generated at all, is shown in the second column. The third
column shows the fraction of the test set for which the first target QLF generated
is correct. The fourth and fifth column shows the number of rules generated

2The specialisation step described in [4] was omitted.

and the cputime® in seconds respectively. The last column shows the coverage
obtained from just storing the pairs that were given as input.

No. ex. | Cov. | 1% cov. | No. clauses | Time (s.) | No. rec.
10 | 0.06 0.06 35.2 7.1 0.02
50 | 0.12 0.10 106.0 41.8 0.08
100 | 0.18 0.16 170.7 80.7 0.13
200 | 0.27 0.23 277.1 163.9 0.18
300 | 0.34 0.30 361.6 251.3 0.22
400 | 0.40 0.35 437.2 337.2 0.25
500 | 0.45 0.39 508.3 424.3 0.27

Table 1: Average results from 10 iterations.

It could be seen that although TRL in fact tries to generate as general rules
as possible, it does not suffer significantly from producing too non-determinate
rules, as indicated by the relatively small difference in coverage and 1%¢ coverage.
The results rather indicate that TRL suffers from being overly specific. Some
explanations for this problem are given in the next section.

3.3 Comments

The rules that are produced are of varying complexity. Here follows the initial
sequence of rules produced in one of the sessions (they have been rewritten in a
form which should be more readable - the variables in the actual rules produced
are instantiated with terms on the form $var (N) and there are also recursive
calls to trule/2 instead of transfer variables):

trule([tr(1) [tr(2)],
[tr(D) [tr(2)]).

trule([tr(1)],
[tr(1]1).

trule(form(_,verb(pres,no,no,no,y),A,
B~ [B,form(_,tr(1),_,C [C,v(A) |tr(2)],) ,[tr(3),Altr(4)]1]1,),

form(_,verb(pres,no,no,no,y),D,
E"[E,form(_,tr(1),_,F [F,v(D) ltr(2)1,.),[tr(3),DItr(4)11,.)).

3TRL was implemented in SICStus Prolog v. 3 and was executed on a SUN Ultra 60.

trule([term(_,tr(1),A,tr(2),_,_),
term(_,ord(ref (def,the,sing,1([A-_])),
B~ [cheap_NotExpensive,B],order,’N’(’1’),sing),C,
D~ [and, [and, [tr(3),D], [’one way_TravellingThereOnly’,D]],
form(_,tr(4),_,
E"[E,form(_,prep(to),_,F~[F,Cltr(5)],),
form(_,prep(from),_,G~[G,Cltr(6)]1,)1,)1,_,)1,

[term(_,tr(1),_,tr(2),_,_),

term(_,ord(ref (def,le,sing,1([]1)),
H” [cher_Expensive,H],reverse_order,’N’(’1’),sing),I,
J~ [and, [and, [tr(3),J],[aller_simple_OneWay,J]],
form(_,tr(4),_,
K~ [K,form(_,prep(implicit_to),_,L~[L,I|tr(5)]1,_),
form(_,prep(implicit_from),_,L~[L,I|tr(6)]1,_)]1,01,_,)01).

Comment: The non-recursive transfer rule:

trule([and, [flight_AirplaneTrip,A], [’one way_TravellingThereOnly’,A]]
==[’aller simple_OneWayFlight’,A]).

has not been applied to the QLF-pair from which the above recursive rule stems,
as the variables D and J occur outside the subterms.

trule (A~ [name_of,A|tr(1)],
B~ [name_of,B|tr(1)]).

trule(term(_,q(_,all,plur),A,B"[and, [and, [tr(1),B],
form(_,verb(no,no,yes,no,y),C,
D~ [D, form(_,prep(for),_,E~[E,v(C) [tr(2)],_),
[leave_GoAwayFrom,C,v(A) [tr(3)11,.)],
[island,form(_,verb(pres,no,no,no,y),F,
G~ [G,form(_,tr(4),_,H [H,v(F) Itr(5)1,_),
[depart_Leave,F,v(A)11,.)11,_,.),

term(_,q(_,tous_les,plur),I,J"[and, [and, [tr(1),J],

[island,form(_,verb(pres,no,no,no,y),K,
L~ [L,form(_,conj(pp,implicit_and),_,
M~ [M,form(_,prep(pour),_,N~[N,v(K) Itr(2)1,_),
form(_,prep(de_Directional),_,0°[0,v(K) |tr(3)],_)]1,.),
[partir_Leave,K,v(I)]],_)1],
[island,form(_,verb(pres,no,no,no,y),P,
Q" [Q,form(_,tr(4),_,R"[R,v(P) Itr(5)]1,),
[partir_Leave,P,v(I)11,_.)11,_,.)).

Comment: leave_GoAwayFrom has not been replaced by a transfer variable
as it can only go into quitter_Leave, which is not present. This causes
depart_Leave to be left too as there are two occurrences of partir_Leave

It should be noted that the technique is heavily dependent on the initially
introduced transfer variables - if these are not placed properly the resulting re-
cursive rules will most likely be inaccurate. In the current system, the strategy
for introducing the initial transfer variables is quite simple-minded. In partic-
ular, a subterm that occurs more than once in a QLF is never replaced by a
transfer variable. Much could be won if this restriction is relaxed. For exam-
ple, one could use some elaborate heuristic for coupling non-unique sub-terms.
But it should be noted that in some cases all couplings should be rejected. For
example, consider the following QLF-pair:

qlf_pair([imp,form(_,adv(please_BeGratefullf),_,
A~[A,form(_,verb(no,no,no,imp,y),B,
C~[C,[1ist_Enumerate,B,term(_,ref (pro,you,_,1([1)),_,
D~ [personal,D],_,_),term(_,q(E,only,_),F,
G~ [and, [sub,G,term(_,q(E,bare,plur), _,
H~ [flight_AirplaneTrip,H],_,_)],
[island,form(_,verb(pres,no,no,no,y),I,J"[J,
form(_,prep(after),_,
K~ [K,v(I),term(_,time(timeofday),_,
L-[and, [hour_num,L,’N’(’11°)],
[and, [minute_num,L,’N’(’0°)],
[day_part,L,morningl]1,_,_)1,_),
[depart_Leave,I,v(F)11,.)11,_,.011,.01,.)1,

form(_,interjection(’s\’il vous plait_Interjection’),_,

M~ [M, [imp,form(_,verb(impera,no,no,impera,y),N,
0~ [0, [indiquer_Show,N,term(_,ref (pro,vous,_,1([1)),P,
Q~ [personal,Ql,_,_),term(_,q(_,seulement,_),R,
S~ [and, [sub,S,term(_,ref (def,le,plur,1([P-_1)),_,
T~ [vol_Flight,T],_,_)1,
[island,form(_,verb(pres,no,no,no,y),U,
V- [V,form(_,prep(aprs),_,W" [W,v(U),
term(_,time(timeofday), _,
X~ [and, [hour_num,X,’N’(’11°)],
[minute_num,X,’N’(°0°)]11,_,.)1,.),
[partir_Leave,U,v(R)11,_)11,_,.011,.)11,.)).

None of the occurrences of imp in the source QLF and the (only) occurrence of
imp in the target QLF should be replaced by a transfer variable.

4 Concluding Remarks

We have presented the application of a prototype system, called TRL, to the
problem of inducing recursive transfer rules, given examples of corresponding
QLF pairs and a set of non-recursive transfer rules. An initial experiment
demonstrates that this information is sufficient for the generation of generally
applicable rules that can be used for transfer between previously unseen source
and target QLFs. However, the experiment also demonstrates that the system
suffers from producing overly specific rules, even when the problem of disallow-
ing the derivation of other target QLFs than the correct one is not considered.
This is mainly due to the inability of appropriately using the non-recursive rules
for introducing transfer variables prior to the generation of the recursive rules.

One immediate approach to this problem is to relax the conservative con-
dition that a subterm that occurs more than once may never be replaced by a
transfer variable, e.g. by using some heuristic for selecting which subterm in the
source that should go into a particular subterm in the target (and vice versa).

When the problem of producing overly specific rules in the first phase of
TRL has been overcome, there are several possibilities for handling the problem
with having more than one candidate target QLF that can be generated for
a particular source QLF. One is to specialise the program by introducing new
predicate symbols, e.g. as in [3]. Another possibility is to look at probabilistic
extensions, such as stochastic logic programs [11, 6], and choose the target QLF
that is given the highest probability.

Another approach to the problem of learning transfer rules from QLF-pairs
is to reduce the complexity of the learning task by utilising the grammar rules
and lexica that are used when generating the source and target QLFs (these
were not available in this study). Since the source and target QLFs can be
reconstructed given parse trees that refer only to identifiers of the grammar
rules and lexical items, the transfer rule learning problem can be reduced to
the problem of learning a mapping from such parse trees for source sentences
into parse trees for target sentences. While still a challenging problem, the non-
determinism inherent in the task is significantly reduced by using this indirect
approach compared to inducing rules directly from the QLF pairs.

Acknowledgements

This work was supported by ESPRIT LTR project no. 20237 Inductive Logic
Programming IT and the Swedish Research Council for Engineering Sciences
(TFR). The author would like to thank to David Milward and Stephen Pulman
at SRI-Cambridge for providing the data and for helpful discussions.

10

References

[1]
[2]

[7]

[8]

[9]

[10]

[11]

[12]

Alshawi H. (ed.), The Core Language Engine, MIT Press (1992)

Agnéds M-S., Alshawi H., Bretan I., Carter D., Ceder K., Collins M.,
Crouch R., Digalakis V., Ekholm B., Gambick B., Kaja J., Karlgren J.,
Lyberg B., Price P., Pulman S., Rayner M., Samuelsson C. and Svensson

T., Spoken-Language Translator: First-Year Report, SICS research report,
ISRN SICS-R-94/03-SE (1994)

Bostrom H., “Predicate Invention and Learning from Positive Examples
Only”, Proceedings of the 10th European Conference on Machine Learning,
Springer-Verlag (1998) 226-237

Bostrom H. and Zemke S., “Learning Transfer Rules by Inductive Logic
Programming (Preliminary Report)”, Dept. of Computer and Systems
Sciences, Stockholm University and Royal Institute of Technology (1996)

Clocksin W.F. and Mellish C.S, Programming in Prolog, Springer Verlag
(1981)

Cussens J., “Loglinear models for first-order probabilistic reasoning”,
Proc. of Uncertainty in Artificial Intelligence (1999)

Lloyd J. W., Foundations of Logic Programming, (2nd edition), Springer-
Verlag (1987)

Milward D. and Pulman S., “Transfer learning using QLFs”, Technical
report, SRI International (1997)

Mooney R. J. and Califf M. E., “Learning the Past Tense of English Verbs
Using Inductive Logic Programming”, in Wermter S., Riloff E. and Scheler
G. (eds.), Symbolic, Connectionist and Statistical Approaches to Learning
for Natural Language Pr ocessing, Springer-Verlag (1996) 370-384

Muggleton S., “Inverse entailment and Progol”, New Generation Comput-
ing 13 (1995)

Muggleton S., “Stochastic Logic Programs”, in De Raedt L. (ed.), Ad-
vances Inductive Logic Programming, 10S Press (1995) 254264

Quinlan J. R., “Learning Logical Definitions from Relations”, Machine
Learning 5 (1990) 239-266

11

