
A Very Simple SIP User Agent
Sun Gang, gangs@kth.se

1 Introduction
 This assignment is to design and implement a SIP User Agent namely SIP Speaker which can be
regarded as a robot answering machine. The SIP waits for incoming calls and answers then when
received. When the call is answered, the SIP Speaker will play a sound. After that, the SIP Speaker
will terminate the call. And a web server is integrated too. This server is used to manage answering
message that SIP Speaker players.

2 Installation
 Set the CLASSPATH to include the lib files of JMF and Freetts.
1.Compile:
 Make sure the directory structure ik2213/assignment2 is maintained, then run "javac
ik2213/assignment2/*.java" to compile all the java code.
2.Run & Configure:
 Make sure the configuration file is in current working directory, then start the SIPSpeaker as
"java ik2213/assignment2/SIPSpeaker [-c config_file_name] [-user sip_uri] [-http
http_bind_address]" To stop the server, go to URL "http://http_bind_address" and press "close".
3.Use:
 Dial "sip_uri", the call will be established and the audio message will be played. The call will be
terminated when audio message ends or user hands up the phone. To manage answering message,
go to URL "http://http_bind_address".
 The program works fine with both SJphone and Ekiga on our own laptops, but when running on
development server (studdev.ssvl.kth.se) throught ssh -X (Enable X11 forwarding), the server gives
warning: "libxcb: WARNING! Program tries to unlock a connection without having acquired a lock
first, which indicates a programming error". SJphone does not play any sound in this situation, but
Ekiga still works fine.

3 Probems and Solutions
Configuration management:
 The main class SIPSpeaker is responsible to manage configuration. Configuration parameters
include: sip user name, sip interface address, sip port number, http interface address, http
portnumber, default message text, default audio file name and current audio file name. During
application startup, SIPSpeaker will first parse command-line arguments, then try to load and set
the configurations. All command-line arguments (including configuration file name) are optional.
Parameters specified in command-line arguments have higher priority than those in configuration
file, if some parameter is missing in both command-line and configuration file, default value will be
used. During application shutdown, all parameters will be saved back into the configuration file.
HTTP server & FreeTTS:
 After get the configuration properties, server will check that if the default WAV file exists or not.
If it doesn’t exist, server will create the default WAV file using FreeTTS library. And then HTTP
server will start. Server listens to the incoming request on the port which defined in configuration
file. By checking the HTTP request head, server decides that it should response the administration
page for GET request or creates a new HandlePost class for POST request.HandlePost is used for
handle POST request including extracting the variable’s value and doing process corresponding the
request. If the value of variable “button” is “Close”, server will invoke the shutdown method in
class SIPSpeaker. If the value of variable “button” is “Delete” or the speak content that user want
to use is empty, server will delete the user defined WAV file, and use the default WAV file. If the
value of variable “button” is “Change”, server will create a new user defined WAV file or cover the
old one by using FreeTTS. FreeTTS is a speech synthesis system written entirely in the JavaTM

mailto:gangs@kth.se

programming language. We modified the Helloworld demo, and made it suitable for our program.
The voice of “kevin16” is used here, and the content of speech is extracted from the POST data.
Finally, the text will be transformed to a new WAV file.
UDP transmission:
 PacketManager is used to handle UDP transmission. It opens an UDP socket using specified sip
address and port number. In order to support multiple users, PacketManager uses a HashMap to
manage and store different call sessions. Remote socket (ip address and port number) is used as key
while CallHandler object is value, different call sessions will be delivered to different
CallHandlers. PacketManager implements Runnable interface, its main processing loop will try
to receive an incoming UDP packet, retrieve the remote socket, and look up the HashMap to get the
corresponding CallHandler to handle this packet. If it is a new call request, a new CallHandler
will be created. After a call session closes, its key/value pair in HashMap will be removed. After
new answering message is created, PacketManager will start using new audio message
immediately and update the current audio message when there is no active call. If no current audio
message is available, PacketManager will use the default audio message.
Call handling:
 CallHandler is used to handle call sessions. When receiving an UDP packet, CallHandler will
create a SessionInformation object to retrieve and store the SIP message, check the SIP
information and make sure this message is valid and not duplicate, and then it will send out
appropriate SIP & SDP response if needed. After a call session is setup, it will use
SessionInformation to create an AudioTransmitter object, and start a new thread to transmit RTP
audio stream. When the audio stream is fully transmitted or the remote user hands up, CallHandler
will close the call session.
SIP & SDP parsing:
 SessionInformation is used to parse and store SIP & SDP message, generate SIP & SDP
response from request information. When parsing SDP request, it only retrieves the remote RTP
socket information. In SDP response, SessionInformation specifies that SIPSpeaker will use Ulaw
PCM coding and work in send-only mode. To create an AudioTransmitter object,
SessionInformation will randomly select an available UDP port (>1024) for RTP transmission.
RTP transmission:
 AudioTransmitter is responsible for RTP transmission. It imports the audio file for current
message, encode the audio and prepare for transmission. It provides functions to
controltransmission (start, stop, get duration time).

4 Conclusion
The SIPSpeaker application implements basic functions as a VoIP answering machine, it can handle
multiple simultaneous calls, and it provides a web interface to manager answering messages.To
make the application more practical, the following aspects can be addressed: (1) enhance the web
interface to specify different messages for different caller; (2) support more RTP audio coding; (3)
enable caller to leave an audio message; and (4) manage and store calling history.

