
Distributed systems and their
properties

(Lecture 2 for Programming of
Interactive Systems)

Fredrik Kilander & Wei Li

10/31/2006 2/28Programming of Interactive
Systems

Agenda
• Interaction in Interactive Systems
• Evolution in Distributed Systems
• Distributed Systems

– OSI Model & Middleware
– Remote Procedural Call (RPC)
– Remote Method Invocation (RMI)
– Message Oriented Middleware
– Sockets

• Summary

10/31/2006 3/28Programming of Interactive
Systems

Interactive Systems

Early computing – Z1 (1938)

10/31/2006 4/28Programming of Interactive
Systems

Interactive Systems

Early computing – Manchester Mark I (1949)

10/31/2006 5/28Programming of Interactive
Systems

Interactive Systems

• Special environments
iLounge (2007)

10/31/2006 6/28Programming of Interactive
Systems

Interactive Systems

Tangible interfaces – Reactable (2009)

10/31/2006 7/28Programming of Interactive
Systems

Interactive Systems

Gesture+voice interfaces – Kinect (2010)

10/31/2006 8/28Programming of Interactive
Systems

Interactive Playground

Banabi, by Maurizio Piraccini

10/31/2006 9/28Programming of Interactive
Systems

Intangible Systems

Computer networks – peer networks, ad-
hoc networks, temporary associations

10/31/2006 10/28Programming of Interactive
Systems

Definition of a Distributed System
A distributed system is: A collection of independent

computers that appears to its users as a single
coherent system.

-- Andrew S. Tanenbaum

• Machines are running autonomously
• Software hides that processes and resources are physically

distributed across multiple computers over networks

Goal: Users and applications can access remote
resources and share them with other users in a
controlled way through the interaction with a DS
in a consistent and uniform way

Computer system

ENVIRONMENT
& User

input output

10/31/2006 11/28Programming of Interactive
Systems

Interactive System

Interactive systems

Interacting with and through different systems

10/31/2006 13/28Programming of Interactive
Systems

Interactive System

H1 – it is afraid of being stepped on
H2 – it is afraid of shadow
H3 – when the camera can’t see it, it moves

Reverse engineering cause
and effect can be hard –
what guides the behaviour
of the creatures?

10/31/2006 14/28Programming of Interactive
Systems

Interactive Systems

•Distributed Systems (DS)

•Mobile Computing (MC)

•Pervasive Computing (PC)

Pervasive Computing: Vision and Challenges
M. Satyanarayanan, School of Computer Science Carnegie Mellon University

Remote communication
protocol layering, RPC, end-to-end args . . .

Fault tolerance
ACID, two-phase commit, nested transactions

. . .
High Availability

replication, rollback recovery, . . .
Remote information access

dist. file systems, dist. databases, caching, . . .
Distributed security

encryption, mutual authentication, . . .

Mobile networking
Mobile IP, ad hoc networks, wireless TCP fixes, . . .

Mobile information access
disconnected operation, weak consistency, . . .

Adaptive applications
proxies, transcoding, agility, . . .

Energy-aware systems
goal-directed adaptation, disk spin-down, . . .

Location sensitivity
GPS, WiFi triangulation, context-awareness, . . .

Contemporary
Interactive
Systems

10/31/2006 16/28Programming of Interactive
Systems

Transparency in a Distributed System

Different forms of transparency in a distributed system.

Transparency Description

Access Hide differences in data representation and how a
resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location
(static deployment)

Relocation Hide that a resource may be moved to new location
during use (dynamic)

Replication Hide that a resource is replicated

Concurrency Hide that a resource may be shared by several
competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or
on disk

10/31/2006 17/28Programming of Interactive
Systems

Important Issues in Distributed Systems

• Communication:
– the basis of a DS is to support access to remote

resources

• Processes:
– communication takes place between processes
– schedule and manage processes
– threads, code migration, client/server, software

agents

10/31/2006 18/28Programming of Interactive
Systems

Important Issues in Distributed Systems

• Naming:
– the shared resources in a DS have to be

identified uniquely
– each identification should be resolvable for

retrieving the entity it refers to
– Example 1: URL→IPnr:port→MAC
– Example 2: Lisa→telephone nr →GSM

tower→terminal (handset)

10/31/2006 19/28Programming of Interactive
Systems

Important Issues in Distributed Systems

• Synchronization:
– protect concurrent access from conflicts; one

writer; only read from a consistent state

• Consistency and Replication:
– data are replicated to enhance reliability and

performance
– keep replicas consistent (also called data

synchronization); cache management.

10/31/2006 20/28Programming of Interactive
Systems

Important Issues in Distributed Systems

• Fault Tolerance:
– DS are subject to failures as communication

spans multiple computers or even networks
– it is important to have automatic recovery from

failures without affecting the overall performance
– automatic configuration and adaptation

Use
resource

Find
resource

10/31/2006 21/28Programming of Interactive
Systems

Important Issues in Distributed Systems

• Security:
– secure communication (secure channel)
– provide access protection to prevent malicious or

unauthorized access
– Example: only group members currently in room 4 are

allowed to read each other’s files
– authentication and auditing
– distributed administration
– authority in peer-to-peer systems

10/31/2006 22/28Programming of Interactive
Systems

Communication
Layers, interfaces, and protocols in the OSI (Open Systems

Interconnection) reference model.
• Divided into 7 layers. Each deals with one
specific aspect of the communication

10/31/2006 23/28Programming of Interactive
Systems

• Distributed systems are
often organized as a
software layer placed
between user and
application and the
underneath operation
system.

• A distributed system is also
called middleware and the
middleware layer extends
over multiple machines.

• Middleware is an
application layer protocol
(the layers above transport
layer are all categorized into
application layer).

Positioning Distributed System
(Middleware)

Middleware Service

Internet

10/31/2006 24/28Programming of Interactive
Systems

Binding a Client to a Server

Client-to-server binding in DCE
(distributed computing environment 1990-)

2-15

Endpoint= IP+Port

(server, endpoint) pairs

10/31/2006 25/28Programming of Interactive
Systems

Remote Procedure Call (RPC)
Extend the procedure call over the

network by allowing programs
to call procedures located on
other machines through Stubs:

1. Client program calls client stub to
place a remote procedure call

2. Client stub builds a request message
and sends to remote server

3. Server stub receives the message and
unpacks parameters, calls the local
procedure

4. Procedure executes and returns result
to the server stub

5. Server stub packs it in message, and
sends back to client stub

6. Client stub unpacks result, returns to
client program

A synchronous
Client/Server Model

Server Stub

Client Stub

6

3

1

4

2

5

10/31/2006 26/28Programming of Interactive
Systems

Remote Procedure Call (RPC)
Extend the procedure call over the

network by allowing programs
to call procedures located on
other machines

1. The client calls the server to place a
service request

2. While the server processes the
request, the client keeps executing

3. The server sees the request, and
responds to it

4. The server calls back to the client with
the result

5. The client sees the response and acts
upon it

An asynchronous
and symmetric

Client/Server Model

Server

Client

Request Response
1

2

3

4

5

+ Higher parallelism
- Higher complexity

10/31/2006 27/28Programming of Interactive
Systems

Remote Procedure Call (RPC)
Extend the procedure call over the

network by allowing programs
to call procedures located on
other machines

1. The client calls the server to place a
service request

2. While the server processes the
request, the client keeps executing

3. The server sees the request, and
responds to it

4. The server calls back to the client with
the result

5. The client sees the response and acts
upon it

An asynchronous
and symmetric

Client/Server Model

Server

Client

1

2

3

4

5

+ Higher parallelism
- Higher complexity

Worker thread

Worker thread

Listener thread

Listener thread

10/31/2006 28/28Programming of Interactive
Systems

Client & Server Stubs
The Stubs take charge of:
1) Building the RPC message (parameters and results),

also called marshaling and unmarshaling
2) Establishing the connection to transfer messages.

10/31/2006 29/28Programming of Interactive
Systems

Remote Method Invocation
• Object-oriented technology
encapsulates data,
(state/Property) and
operations (method) on those
data
• This encapsulation offers a
better transparency for system
design and programming
• The principle in RPC can be
equally applied to objects

• Client uses proxy (a local
representative of the remote
object) to operate with the
remote one.
• Proxy/Skeleton is analog to
the stubs in RPC, in addition, it
presents an object view.

Java

10/31/2006 30/28Programming of Interactive
Systems

Passing Object by Value or Reference
(RMI)

proxy1MediaPlayer
Controller

Skeleton
Media
Player

Interface Method:

void Play ();
void Play (String filename);
void Play (MP3Selector mps);

Interface Method:

void Play();
void Play (String filename);
void Play (MP3Selector mps);

Three cases:
1) Play () without parameters. // only method name will be sent

“http://myhost/a.mp3”

2) Play (“http://myhost/a.mp3”) // send filename as a copied object (value/copy)

3) Play (mps) { // send the copy of proxy2
play(mps.getLatestMP3()) // (reference to MP3Selector)

}

Skeleton

Machine C

MP3Selector

proxy2proxy2Machine A Machine B

“http://myhost/a.mp3”

• The object to send to another
machine has to be Serializable.

• The object to send has to have
its class definition in a publicly
accessible codebase.

• Setup security policy file

http://java.sun.com/developer/onlineTraining/rmi/RMI.html

10/31/2006 31/28Programming of Interactive
Systems

Conclusion (RPC & RMI)
• To be able to access a remote object, a

local stub (proxy) which refers to the
remote object is required.

• The stub appears as a local object, but
delivers the received accesses to the
remote object.

• The stub can be passed (e.g. in Java RMI)
to other programs (on remote computers)
to share the access to the same remote
object.

10/31/2006 32/28Programming of Interactive
Systems

Conclusion (RPC & RMI)
• Another way to access a remote object is

to make a cloned local copy.
• This improves performance by removing

the call delay over the network, but …
• Consistency becomes an issue if they

need to be synchronized since they are
now two independent objects (from the
same class) in the network.

10/31/2006 33/28Programming of Interactive
Systems

Conclusion (RPC & RMI)
• Stubs, Proxies and Skeletons …

– hides the complexity of marshaling and
unmarshaling.

– hides the network communication
– enhances the access transparency to the

upper-layer applications.

10/31/2006 34/28Programming of Interactive
Systems

Conclusion (RPC & RMI)
• RPC and RMI use a transient

synchronous communication model:
– The sender blocks until it receives a reply

from the other side.
– This model is not suitable for pervasive

computing scenarios where time is critical.

10/31/2006 35/28Programming of Interactive
Systems

Berkeley Sockets

Connection-oriented communication (TCP) pattern using sockets.

• UDP communication is asynchronous, so does not have the synchronization
point as in TCP

• UDP server just creates a UDP socket and then receives (blocking), and
UDP client has no “connect” phase to block, but just sends.

• UDP port =/= TCP port, they may use the same port number without conflict

TCP/UDP Network communication like plug-in sockets

10/31/2006 36/28Programming of Interactive
Systems

Message-Oriented Middleware
• Socket communication gives an easy-to-use abstraction

to network programming.

• Sockets are supported by most programming languages
and operating systems supporting networks.

• To achieve efficiency and simplicity, many middlewares
are implemented in terms of message delivery based on
(hidden) socket communication.

• This is called Message-oriented middleware (MOM).
• Examples: IBM MQSeries, Tuple Space, JavaSpace.

10/31/2006 37/28Programming of Interactive
Systems

The general organization of a message-queuing system with routers.

General Architecture of a Message-Queuing System

• Messages are
delivered in a
sorting-storing-
forwarding fashion

• Applications are
loose-coupled by
asynchronous
messages (events)

• R1, R2 are
Message Servers in
MOM

• In email systems,
R1, R2 are email
servers

10/31/2006 38/28Programming of Interactive
Systems

Message-Oriented Communication

Synchronous Asynchronous

PersistentTransient

time

communication

10/31/2006 39/28Programming of Interactive
Systems

Summary
• OSI Model & Middleware
• Remote Procedural Call (RPC)
• Remote Method Invocation (RMI)
• Sockets
• Message Oriented Middleware

Distributed systems and their
properties

(Lecture 2 for Programming of
Interactive Systems)

Fredrik Kilander & Wei Li

