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Interactive Systems

Early computing – Z1 (1938)
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Interactive Systems

Early computing – Manchester Mark I (1949)
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Interactive Systems

• Special environments
iLounge (2007)
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Interactive Systems

Tangible interfaces – Reactable (2009)
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Interactive Systems

Gesture+voice interfaces – Kinect (2010)
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Interactive Playground

Banabi, by Maurizio Piraccini
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Intangible Systems

Computer networks – peer networks, ad-
hoc networks, temporary associations 
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Definition of a Distributed System
A distributed system is: A collection of independent 

computers that appears to its users as a single 
coherent system.

-- Andrew S. Tanenbaum

• Machines are running autonomously
• Software hides that processes and resources are physically 

distributed across multiple computers over networks

Goal: Users and applications can access remote 
resources and share them with other users in a 
controlled way through the interaction with a DS 
in a consistent and uniform way



Computer system

ENVIRONMENT
& User

input output
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Interactive System



Interactive systems

Interacting with and through different systems
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Interactive System

H1 – it is afraid of being stepped on
H2 – it is afraid of shadow
H3 – when the camera can’t see it, it moves

Reverse engineering cause 
and effect can be hard –
what guides the behaviour 
of the creatures?
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Interactive Systems

•Distributed Systems (DS)

•Mobile Computing (MC)

•Pervasive Computing (PC)



Pervasive Computing: Vision and Challenges
M. Satyanarayanan, School of Computer Science Carnegie Mellon University

Remote communication
protocol layering, RPC, end-to-end args . . .

Fault tolerance
ACID, two-phase commit, nested transactions 

. . .
High Availability

replication, rollback recovery, . . .
Remote information access

dist. file systems, dist. databases, caching, . . .
Distributed security

encryption, mutual authentication, . . .

Mobile networking
Mobile IP, ad hoc networks, wireless TCP fixes, . . .

Mobile information access
disconnected operation, weak consistency, . . .

Adaptive applications
proxies, transcoding, agility, . . .

Energy-aware systems
goal-directed adaptation, disk spin-down, . . .

Location sensitivity
GPS, WiFi triangulation, context-awareness, . . .

Contemporary 
Interactive 
Systems
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Transparency in a Distributed System

Different forms of transparency in a distributed system.

Transparency Description

Access Hide differences in data representation and how a 
resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location 
(static deployment)

Relocation Hide that a resource may be moved to new location 
during use (dynamic)

Replication Hide that a resource is replicated

Concurrency Hide that a resource may be shared by several 
competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or 
on disk
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Important Issues in Distributed Systems

• Communication:
– the basis of a DS is to support access to remote 

resources

• Processes: 
– communication takes place between processes
– schedule and manage processes 
– threads, code migration, client/server, software 

agents
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Important Issues in Distributed Systems

• Naming:
– the shared resources in a DS have to be 

identified uniquely
– each identification should be resolvable for 

retrieving the entity it refers to
– Example 1: URL→IPnr:port→MAC
– Example 2: Lisa→telephone nr →GSM 

tower→terminal (handset)
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Important Issues in Distributed Systems

• Synchronization:
– protect concurrent access from conflicts; one 

writer; only read from a consistent state

• Consistency and Replication:
– data are replicated to enhance reliability and 

performance
– keep replicas consistent (also called data 

synchronization); cache management.
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Important Issues in Distributed Systems

• Fault Tolerance: 
– DS are subject to failures as communication 

spans multiple computers or even networks
– it is important to have automatic recovery from 

failures without affecting the overall performance
– automatic configuration and adaptation

Use
resource

Find
resource
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Important Issues in Distributed Systems

• Security: 
– secure communication (secure channel)
– provide access protection to prevent malicious or 

unauthorized access
– Example: only group members currently in room 4 are 

allowed to read each other’s files
– authentication and auditing
– distributed administration
– authority in peer-to-peer systems
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Communication
Layers, interfaces, and protocols in the OSI (Open Systems 

Interconnection) reference model.
• Divided into 7 layers. Each deals with one 
specific aspect of the communication
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• Distributed systems are 
often organized as a 
software layer placed 
between user and 
application and the 
underneath operation 
system. 

• A distributed system is also 
called middleware and the 
middleware layer extends 
over multiple machines.

• Middleware is an 
application layer protocol
(the layers above transport 
layer are all categorized into 
application layer).

Positioning Distributed System 
(Middleware)

Middleware Service

Internet
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Binding a Client to a Server

Client-to-server binding in DCE
(distributed computing environment 1990-)

2-15

Endpoint= IP+Port

(server, endpoint) pairs
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Remote Procedure Call (RPC)
Extend the procedure call over the 

network by allowing programs 
to call procedures located on 
other machines through Stubs:

1. Client program calls client stub to 
place a remote procedure call

2. Client stub builds a request message 
and sends to remote server 

3. Server stub receives the message and 
unpacks parameters, calls the local 
procedure

4. Procedure executes and returns result 
to the server stub

5. Server stub packs it in message, and 
sends back to client stub

6. Client stub unpacks result, returns to 
client program

A synchronous 
Client/Server Model

Server Stub

Client Stub

6

3

1

4

2

5
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Remote Procedure Call (RPC)
Extend the procedure call over the 

network by allowing programs 
to call procedures located on 
other machines

1. The client calls the server to place a 
service request

2. While the server processes the 
request, the client keeps executing

3. The server sees the request, and 
responds to it

4. The server calls back to the client with 
the result

5. The client sees the response and acts 
upon it

An asynchronous 
and symmetric 

Client/Server Model

Server

Client

Request Response
1

2

3

4

5

+ Higher parallelism
- Higher complexity
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Remote Procedure Call (RPC)
Extend the procedure call over the 

network by allowing programs 
to call procedures located on 
other machines

1. The client calls the server to place a 
service request

2. While the server processes the 
request, the client keeps executing

3. The server sees the request, and 
responds to it

4. The server calls back to the client with 
the result

5. The client sees the response and acts 
upon it

An asynchronous 
and symmetric 

Client/Server Model

Server

Client

1

2

3

4

5

+ Higher parallelism
- Higher complexity

Worker thread

Worker thread

Listener thread

Listener thread
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Client & Server Stubs
The Stubs take charge of:
1) Building the RPC message (parameters and results), 

also called marshaling and unmarshaling
2) Establishing the connection to transfer messages.
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Remote Method Invocation
• Object-oriented technology 
encapsulates data, 
(state/Property) and 
operations (method) on those 
data
• This encapsulation offers a 
better transparency for system 
design and programming 
• The principle in RPC can be 
equally applied to objects

• Client uses proxy (a local 
representative of the remote 
object) to operate with the 
remote one.
• Proxy/Skeleton is analog to
the stubs in RPC, in addition, it 
presents an object view.

Java
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Passing Object by Value or Reference
(RMI)

proxy1MediaPlayer
Controller

Skeleton
Media 
Player

Interface Method:

void Play ();
void Play (String filename);
void Play (MP3Selector mps);

Interface Method:

void Play();
void Play (String filename);
void Play (MP3Selector mps);

Three cases:
1) Play () without parameters.  // only method name will be sent

“http://myhost/a.mp3”

2) Play (“http://myhost/a.mp3”) // send filename as a copied object (value/copy)

3) Play (mps) { // send the copy of proxy2
play(mps.getLatestMP3()) // (reference to MP3Selector)

}

Skeleton

Machine C

MP3Selector

proxy2proxy2Machine A Machine B

“http://myhost/a.mp3”

• The object to send to another 
machine has to be Serializable.

• The object to send has to have 
its class definition in a publicly 
accessible codebase.

• Setup security policy file

http://java.sun.com/developer/onlineTraining/rmi/RMI.html
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Conclusion (RPC & RMI)
• To be able to access a remote object, a 

local stub (proxy) which refers to the 
remote object is required.

• The stub appears as a local object, but 
delivers the received accesses to the 
remote object.

• The stub can be passed (e.g. in Java RMI) 
to other programs (on remote computers) 
to share the access to the same remote 
object.
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Conclusion (RPC & RMI)
• Another way to access a remote object is 

to make a cloned local copy.
• This improves performance by removing 

the call delay over the network, but …
• Consistency becomes an issue if they 

need to be synchronized since they are 
now two independent objects (from the 
same class) in the network.
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Conclusion (RPC & RMI)
• Stubs, Proxies and Skeletons …

– hides the complexity of marshaling and 
unmarshaling.

– hides the network communication
– enhances the access transparency to the 

upper-layer applications.
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Conclusion (RPC & RMI)
• RPC and RMI use a transient 

synchronous communication model:
– The sender blocks until it receives a reply 

from the other side. 
– This model is not suitable for pervasive 

computing scenarios where time is critical.
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Berkeley Sockets

Connection-oriented communication (TCP) pattern using sockets.

• UDP communication is asynchronous, so does not have the synchronization 
point as in TCP

• UDP server just creates a UDP socket and then receives (blocking), and 
UDP client has no “connect” phase to block, but just sends.

• UDP port =/= TCP port, they may use the same port number without conflict

TCP/UDP Network communication like plug-in sockets
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Message-Oriented Middleware
• Socket communication gives an easy-to-use abstraction 

to network programming.

• Sockets are supported by most programming languages 
and operating systems supporting networks.

• To achieve efficiency and simplicity, many middlewares
are implemented in terms of message delivery based on 
(hidden) socket communication.

• This is called Message-oriented middleware (MOM).
• Examples: IBM MQSeries, Tuple Space, JavaSpace.
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The general organization of a message-queuing system with routers.

General Architecture of a Message-Queuing System

• Messages are 
delivered in a 
sorting-storing-
forwarding fashion

• Applications are 
loose-coupled by 
asynchronous 
messages (events)

• R1, R2 are 
Message Servers in 
MOM 

• In email systems, 
R1, R2 are email 
servers
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Message-Oriented Communication

Synchronous Asynchronous

PersistentTransient

time

communication
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Summary
• OSI Model & Middleware
• Remote Procedural Call (RPC)
• Remote Method Invocation (RMI)
• Sockets
• Message Oriented Middleware
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