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Abstract
Following the increased popularity of dynamic languages and
their increased use in critical software, there have been many
proposals to retrofit static type system to these languages to
improve possibilities to catch bugs and improve performance.

A key question for any type system is whether the types
should be structural, for more expressiveness, or nominal, to
carry more meaning for the programmer. For retrofitted type
systems, it seems the current trend is using structural types.
This paper attempts to answer the question to what extent
this extra expressiveness is needed, and how the possible
polymorphism in dynamic code is used in practise.

We study polymorphism in 36 real-world open source
Python programs and approximate to what extent nominal
and structural types could be used to type these programs.
The study is based on collecting traces from multiple runs
of the programs and analysing the polymorphic degrees of
targets at more than 7 million call-sites.

Our results show that while polymorphism is used in all
programs, the programs are to a great extent monomorphic.
The polymorphism found is evenly distributed across librar-
ies and program-specific code and occur both during program
start-up and normal execution. Most programs contain a few
“megamorphic” call-sites where receiver types vary widely.
The non-monomorphic parts of the programs can to some
extent be typed with nominal or structural types, but none of
the approaches can type entire programs.

Categories and Subject Descriptors D.3 Programming
Languages [D.3.3 Language Constructs and Features]: Poly-
morphism

Keywords Python, dynamic languages, polymorphism, trace-
based analysis

1. Introduction
The increasing use of dynamic languages in critical applica-
tion domains [21, 25, 30] has prompted academic research on
“retrofitting” dynamic languages with static typing. Examples
include using type inference or programmer declarations for
Self [1], Scheme [36], Python [4, 5, 29], Ruby [3, 15], JavaS-
cript [17, 35], and PHP [14].

Most mainstream programming languages use static typ-
ing from day zero, and thus naturally imposed constraints
on the run-time flexibility of programs. For example, strong
static typing usually guarantees that a well-typed x.m() at
compile-time will not fail at run-time due to a “message not
understood”. This constraint restricts developers to updates
that grow types monotonically.

Retrofitting a static type system on a dynamic language
where the definitions of classes, and even individual objects,
may be arbitrarily redefined during runtime poses a signific-
ant challenge. In previous work for Ruby and Python, for
example, restrictions have been imposed om the languages to
simplify the design of type systems. The simplifications con-
cern language features like dynamic code evaluation [15, 29],
the possibility to make dynamic changes to definitions of
classes and methods [4], and possibility to remove methods
[15]. Recent research [2, 24, 27] has shown that the use of
such dynamic language features is rare—but non-negligible.

Apart from the inherent plasticity of dynamic languages
described above, a type system designer must also consider
the fact that dynamic typing gives a language unconstrained
polymorphism. In Python, and other dynamic languages,
there is no static type information that can be used to control
polymorphism e.g., for method calls or return values.

Previous retrofitted type systems use different approaches
to handle ad-hoc polymorphic variables. Some state pre-
requisites disallowing polymorphic variables [5, 35], assum-
ing that polymorphic variables are rare [29]. Others use a
flow-sensitive analysis to track how variables change types
[11, 15, 18]. Disallowing polymorphic variables is too re-
strictive as it rules out polymorphic method calls [19, 24, 27].

There are not many published results on the degree of
polymorphism or dynamism in dynamic languages [2, 8, 19,
24, 27]. This makes it difficult to determine whether or not
relying on the absence of, or restricting, some dynamic beha-
viour is possible in practise, and whether certain techniques



for handling difficulties arising due to dynamicity is prefer-
able over others.

This article presents the results of a study of the runtime
behaviour of 36 open source Python programs. We inspect
traces of runs of these programs to determine the extent to
which method calls are polymorphic in nature, and the nature
of that polymorphism, ultimately to find out if programs’
polymorphic behaviour can be fitted into a static type.

1.1 Contributions
This paper presents the results of a trace-based study of a
corpus of 36 open-source Python programs, totalling oven 1
million LOC. Extracting and analysing over 7 million call-
sites in over 800 million events from trace-logs, we report
several findings – in particular:

– A study of the run-time types of receiver variables that
shows the extent to which the inherently polymorphic
nature of dynamic typing is used in practise.
We find that variables are predominantly monomorphic,
i.e., only holds values of a single type during a program.
However, most programs have a few places which are
megamorphic, i.e., variables containing values of many
different types at different times or in different contexts.
Hence, a retrofitted type system should consider both these
circumstances.

– An approximation of the extent to which a program can be
typed using nominal or structural types using three type-
ability metrics for nominal types, nominal types with para-
metric polymorphism, and structural types. We consider
both individual call-sites and clusters of call-sites inside a
single source file.
We find that, because of monomorphism, most programs
can be typed to a large extent using simple type systems.
Most polymorphic and megamorphic parts of programs are
not typeable by nominal or structural systems, for example
due to use of value-based overloading. Structural typing is
only slightly better than nominal typing at handling non-
monomorphic program parts.

Our trace data and a version of this article with larger figures
is available from dsv.su.se/~beatrice/python.

Outline The paper is organised as follows. § 2 gives a
background on polymorphism and types. § 3 describe the
motivations and goals of the work. § 4 accounts for how the
work was conducted. § 5 presents the results. § 7 discusses
related research and finally in § 8 we present our conclusions
and present ideas for future work.

2. Background
We start with a background and overview of polymorphism
and types (§ 2.1) followed by a quick overview of the Python
programming language (§ 2.2). A reader with a good under-
standing of these areas may skip over either or both part(s).

2.1 Polymorphism and Types
Most definitions of object-oriented programming lists poly-
morphism—the ability of an object of type T to appear as of
another type T ′—as one of its cornerstones.

In dynamically typed languages, like Python, polymorph-
ism is not constrained by static checking and error-checking
is deferred to the latest possible time for maximal flexibility.
This means that T and T ′ from above need not be explicitly
related (through inheritance or other language mechanisms).
It also means that fields can hold values of any type and still
function normally (without errors) as long as all uses con-
form to the run-time type of the current object they store.
This kind of typing/polymorphic behaviour is commonly re-
ferred to as “duck typing” [23].

Subtype polymorphism in statically typed languages is
bounded by the requirements needed for static checking (e.g.,
that all well-typed method calls can be bound to suitable
methods at run-time). This leads to restrictions for how T and
T ′ may be related. In a nominal system this may mean that
the classes used to define T and T ′ must have an inheritance
relation. A nominal type is a type that is based on names, that
is that type equality for two objects requires that the name
of the types of the objects is the same. In a structural type
system, type equivalence and subtyping is decided by the
definition of values’ structures. For example, in OCaml and
Strongtalk, type equivalence is determined by comparing the
fields and methods of two objects and also comparing their
signatures (method arguments and return values).

Strachey [33] separates the polymorphism of functions
into two different categories: ad hoc and parametric. The
main difference between the categories is that ad-hoc poly-
morphism lacks the structure brought by parameterisation
and that there is no unified method that makes it possible to
predict the return type from an ad-hoc polymorphic function
based on the arguments passed in as would be the case for
the parametric polymorphic function [33]. As an example of
ad hoc polymorphism, consider overloading of / for combin-
ations of integers and reals always yielding a real.

Cardelli and Wegner [10] further divide polymorphism
into two categories at the top level: universal and ad-hoc.
Universal polymorphism corresponds to Strachey’s paramet-
ric polymorphism together with call inclusion polymorphism,
which includes object-oriented polymorphism (subtypes and
inheritance). The common factor for universal polymorphism
is that it is based on a common structure (type) [10]. Ad-hoc
polymorphism, on the other hand, is divided into overload-
ing and coercion, where overloading allows using the same
name for several functions and coercion allowing polymorph-
ism in situations when a type can automatically be translated
to another type [10].

Using the terms from above, “duck typing” can be de-
scribed as a lazy structural typing [23] (late type checking)
and is a subcategory of ad-hoc polymorphism [10].



2.2 Python
Python is a class based language, but Python’s classes are
far less static than classes normally found in statically typed
systems. Class definitions are executed during runtime much
like any other code, which means that a class is not available
until its definition has been executed. Class definition may
appear anywhere, e.g., in a subroutine or within one branch
of a conditional statement. If two class definitions with the
same name are executed within the same name-space, the last
definition will replace the first (although already created ob-
jects will keep the old class definition). If a class is reloaded,
it might have been reloaded with a different set of methods
than the original one. Given this possibility to reload classes,
the same code creating objects from the class C may end up
creating objects of different classes at different times during
execution, objects that may have a different set of methods.

Python allows multiple inheritance, i.e., a class may have
many superclasses [28]. Subclasses may override methods in
its superclass(es) and may call methods in its superclass(es).
Python’s built-in classes can be used as superclasses.

Python classes are represented as objects at runtime. Class
objects can contain attributes and methods. All members in a
Python class (attributes and methods) are public. Methods al-
ways take the receiver of the method call as the first argument.
It must be explicitly included in the method’s parameter list
but is passed in implicitly in the method call.

There are two different types of classes available in Py-
thon up to version 3.0: old-style/classic classes and new-style
classes. The latter were introduced in Python 2.2 (released
in 2001) to unify class and type hierarchies of the language
and they also (among other things) brought a new method
resolution order for multiple inheritance. From Python 3.0,
all classes are new-style classes.

Python objects are essentially hash tables in that attributes
and methods and their names may be regarded as key-value
pairs. Both attributes and methods may be added, replaced
and entirely removed also after initialisation. For an object
foo, we can add an attribute bar by simply assigning to
that name, i.e. foo.bar = ’Baz’. The same attribute may
then be removed, e.g., by the statement del foo.bar, which
removes both key and value.

Classes in Python are thus less templates for object cre-
ation than what we may be used to from statically typed
languages, but more like factories creating objects–objects
that may later change independent of their class and the other
objects created from the same class. This more dynamic ap-
proach to classes has implications on and may increase pro-
gram polymorphism.

In nominally typed language, a type Sub is a subtype of
another type Sup only if the class Sup is explicitly declared
to be its supertype. In some languages, Python for example,
this declaration may be updated and changed during runtime.

2.3 Measuring Polymorphism
When the code below is run, a class Foo is first defined
containing two methods; init and bar, both expecting
one argument. The init method creates the instance
variable a and assigns the expected argument to it. In the
bar method a call is made to the method foo on the instance
variable a and then a call is made to the method baz on the
argument variable b.

01 10 f = Foo(...)

02 class Foo: 11

03 def __init__(self, a): 12 for e in range(0,100):

04 self.a = a 13 class Bar:

05 14 def baz(self):

06 def bar(self, b): 15 pass

07 self.a.foo() 16

08 b.baz() 17 f.bar(Bar())

09 18

After the class definition is finished, a variable f is created
and it is assigned with a new object of the class Foo.

On line 12–17, follows a for loop that will iterate 100
times and for every iteration the class Bar is created with
a method baz that has no body. On the last line in the for

loop a call is made to the method bar for the Foo object in f

(from line 10) passing a new object of the current Bar class
as an argument.

Several lines in the code above (7, 8 and 17), contain
method calls. These lines are call-sites.

D E F I N I T I O N 1 (Call-site). A call-site in a program is a
point (on a line in a Python source file) where a method call
is made.

Every call-site has two points, the receiver and the argu-
ment(s), where types may vary depending on the path taken
through the program up to the call-site. In the analyses made
for this paper, the focus has been on the receiver types. Argu-
ments will generally become receivers at a later point in the
program execution, which means that also that polymorph-
ism will get captured by the logging.

On line 17, a call is made to the method bar, where the
receiver will always be an object of the class Foo, since the
assignment to f is made from a call to the constructor of
Foo on line 10. This means that the call-site f.bar(...) on
line 10 is monomorphic and will always resolve to the same
method at run-time.

D E F I N I T I O N 2 (Monomorphic). A call-site that has the
same receiver type in all observations is monomorphic.

The call-site on line 7 may be monomorphic, but that can-
not be concluded from the static information in the available
code. The type of the receiver on line 7 depends on the type
of the argument to the constructor when the object was cre-
ated. If objects are created storing objects of different types in
the instance variable a, the line 7 will potentially be executed
with more than one receiver type, that is, it is polymorphic.
If the number of receiver types is very high, the call-site is



instead megamorphic. Following Agesen [1] we count a call-
site as megamorphic if it has been observed with six or more
receiver types.

D E F I N I T I O N 3 (Polymorphic). A call-site that has 2–5
different receiver types in all observations is polymorphic.

D E F I N I T I O N 4 (Megamorphic). A call-site that has six
or more receiver types in all observations is megamorphic.

Line 8 in the code above shows an example of a mega-
morphic call-site with a call to the method baz for the object
in the variable b. The value of b depends on what is passed
as the argument with the method call to bar, made on line
17. The loop on line 12–17 runs the class definition of Bar
in every iteration, which means that every call to the method
baz will be made to an object of a new class. Nevertheless,
since the class always has the same name and contains the
same fields and methods, the classes created here should be
regarded as the same class. This megamorphism is false and
will not be considered as such by our analysis.

3. Motivation and Research Questions
A plethora of proposals for static type systems for dynamic
languages exist [1, 3–5, 15, 17, 29, 35, 36]. The inherent
plasticity of the dynamic languages (for example, the possib-
ility to add and remove fields and methods and change an
object’s class at run-time) is a major obstacle for designers
of type systems but the use of these possibilities have been
shown to be infrequent [2, 19, 24, 27]. Additionally, a type
system designer must also take duck typing into consider-
ation, where objects of statically unrelated classes may be
used interchangeably in places where common subsets of
their methods are used.

We examine several aspects of Python programs of in-
terest to designers of type systems for dynamic languages
in general and for Python specifically. These aspects of pro-
gram dynamicity may also be used to enable comparisons of
different proposed type system solutions.

We study Python’s unlimited polymorphism—duck typing—
in particular the degree of polymorphism in receivers of
method calls in typical programs: How many different types
are used and how related the receivers’ types are e.g., in
terms of inheritance. We study how the underlying dynamic
nature of Python affects the polymorphism of programs due
to classes being dynamically created and possibly modified
at run-time.

Analysis Questions Our questions belong to three categor-
ies: program structure, extent and degree and typeability:

1. Program structure
(a) How many classes do Python programs use/create at

run-time? How often are classes redefined?
(b) How many methods do Python classes have and how

many methods are overridden in subclasses?

2. Extent and degree
(a) What is the proportion between monomorphic and

polymorphic call-sites?
(b) What is the average, median and maximum degrees

of polymorphism and megamorphism (that is, number
of receiver types) of non-monomorphic call-sites?

(c) To what extent are non-monomorphic call-sites
“megamorphic”?

(d) Does the degree of polymorphism and
megamorphism differ between library and program or
between start-up and normal runtime?

(e) What types are seen at extremely megamorphic
call-sites (e.g., with 350 different receiver types)?

3. Typeability
(a) How do types at polymorphic and megamorphic

call-sites and clusters relate to each other in terms of
inheritance and overridden methods?

(b) To what extent is it possible to find a common super
type for all the observed receiver types that makes it
possible to fit the polymorphism into a nominal static
type?

(c) To what extent is it possible to find a common super
type for all the observed receiver types if the nominal
types are extended with parametric polymorphism?

(d) To what extent do receiver types in clusters contain
all the methods that are called at the call-sites of the
cluster? That is, to what extent can we find a common
structural type for all the receiver types found in
clusters?

Following [2, 19, 24, 27] we also examine the applicability
of the phenomenon of Folklore, put forward by Richards et
al [27] which states that there is an initialisation phase that is
more dynamic than other phases of the runtime. We compare
if there are differences in the use of polymorphism depending
on where we find the method calls; during start-up vs. during
normal execution and also if there are differences between
libraries and program-specific code.

4. Methodology
Studying how polymorphism is used in Python programs
necessitates studying real programs. We discarded static ap-
proaches such as program analysis and abstract interpretation
because of their over-approximate nature. Instead, we base
our study on traces of running programs obtained by an in-
strumented version of the standard CPython interpreter that
saves data about all method calls made throughout a program
run. Our instrumented interpreter is based on CPython 2.6.6
because of Debian packaging constraints, which was import-
ant to study certain proprietary code which in the end did not
end up in this study.

The results are obtained from in total 522 runs of 36 open
source Python programs (see Table 1) collected from Source-



Forge [32]. Selection was based on programs’ popularity
(>1,000 downloads), that the program was still maintained
(updated during the last 12 months) and was classified as
stable, i.e., had been under development for some time. For
pragmatic reasons, we excluded programs that used C exten-
sions, and programs that for various reasons would not run
under Debian. For equally pragmatic reasons, we excluded
plugins (e.g., to web browsers), programs that required spe-
cific hardware (e.g., microscopes, network equipment or serv-
ers) and software that required subscriptions (e.g., poker site
accounts).

To separate events in the start-up phase from ”normal
program run-time” in our analyses, we followed the example
of Holkner and Harland [19] and placed markers in the source
of all programs at the point where the start-up phase finished.
This would typically be at the point where the graphical user
interface had finished loading and just before entering the
main loop of the program.

We have chosen to include libraries in our study to make it
possible to compare the library code to program specific code
to see if we find any difference in polymorphic behaviour. To
separate the events originating in library code from those
originating in program specific code in our analyses, a fully
qualified file name was saved for all events.

Command line programs were run using commands given
in official tutorials and manuals to capture the execution of all
standard expected use cases. Libraries were used in a similar
way with examples from official tutorials. Depending on the
availability of examples, command line programs and some
libraries shared between multiple programs were run over
100 times.

For applications with a GUI the official tutorials and ex-
amples were followed by hand and care was taken to ensure
that each menu alternative and button was used. The interact-
ive GUI applications were run for 10–15 minutes between 2
and 12 times depending on the number of functions available.

The Python interpreter we used was instrumented to trace
all method calls (including calls caused by internal Python
constructs, like the use of operators, etc.) and all loaded
class definitions. For all method calls made, we logged the
call-site’s location in the source files, the receiver type and
identity, the method name, the identity of the calling context
(self when the method call was made), the arguments’ types
and return types. Every time a class definition was executed,
we logged the class name, names of superclasses and the
names of the methods.

Program Structure To answer our questions on program
structure from § 3, we collect data about classes loaded at run-
time. We count recurrences of class definitions and compare
their sets of methods.

Extent and Degree (of Polymorphism) To answer our
questions in § 3 § 2a – § 2e, we collect receiver type inform-
ation found at each call-site, and categorise the call-sites

B

f: A

B

f: C

A    C≮∶
C    A≮∶

ab

Wednesday 28 January 15

Figure 1. Parametric polymorphism. Different instances of
B hold objects of different types in the f fields.

based on how many receiver types were found according to
the following categories:

Single-call The call-site was only executed once. It is there-
fore trivially monomorphic, but we conservatively refrain
from classifying it any further.

Monomorphic The call-site was monomorphic and ex-
ecuted more than once, so it is observably monomorphic.
“Observably” refers to the nature of our trace-based
method, which does not exclude the possibility that a
different run of the same program might observe poly-
morphic behaviour for the same call-site.

Polymorphic The call-site was observed with between two
and five different receiver types.

Megamorphic The call-site was observed with more than
five different receiver types.

Typeability The questions in § 3 § 3a – § 3d are all con-
cerned with to what extent the polymorphism found in real
Python programs could be retrofitted with a type system.

All monomorphic call-sites are always typeable with a
nominal or a structural type. Receivers at a specific call-site
in isolation will always have the same structural type (see
§ 2.1). For a polymorphic call-site to be nominally typeable,
all receivers must share a common supertype that defines the
method in question.

We define a metric, N-typeable to approximate static type-
ability with a hypothetical simple nominal type system:

D E F I N I T I O N 5 (N-typeable). A polymorphic call-site is
N-typeable if there is, for all its receiver types, a common
superclass that contains the method called at the call-site.

Nominal typing could be extended with parametric poly-
morphism (see § 2.1 to increase the flexibility to account for
different types being used in the same source locations across
different run-time contexts. In that case, a call-site can be
typed for unrelated receiver types given that it is N-typeable
for each sender identity (that is the value of self when the
call was made).

This would mean that the receiver was typeable for all
calls that were executed inside some specific object, as is
illustrated in Figure 1 with objects a and b, both instances
of the class B. The field f in a holds an instance of the class
C, while the field f in b holds an instance of the class A. A
call-site in the code of the class B, that has the field f as a



receiver would in this case always have the same type for all
calls made in the same caller context.

For all polymorphic and megamorphic call-sites we also
examine if they are NPP-typeable:

D E F I N I T I O N 6 (NPP-typeable). A polymorphic call-site
is NPP-typeable if it is N-typeable or, if the receiver types
were grouped by the identity of the sender (self when the
call was made), we find a common supertype for each group
that contains the method called at the call-site.

The typeability considered so far has been based on indi-
vidual call-sites (i.e., individual source locations). This might
lead to an over-estimate of the typeability of programs. For
example, in the code example below, calls are made to the
method example(a, b) with a first argument of either the
type T or T’, where T has the methods foo() and bar() but
not the method baz() and where T’ has the method foo()

and baz() but not the method bar(). The second argument
for the method calls is always a boolean; a boolean that is
always True when a is of the type T and False when a is of
the type T’ (so-called value-based overloading).

02 def example(a, b):

03 a.foo()

04 if b:

05 a.bar()

06 else:

07 a.baz()

Considering each call-site in isolation, the call-sites on
line 5 and 7 are typeable since they will always have the same
receiver type. However, giving a static type to the program
without significant rewrite would assign a single type to a

which means typing line 3, 5 and 7 with a single static type.
To assign types to co-dependent source locations, we

cluster call-sites connected by the same receiver values (i.e.,
3 & 5 and 3 & 7) plus transitivity (i.e., 5 & 7, indirectly via
3). We then attempt to type the cluster as a whole.

D E F I N I T I O N 7 (Cluster). A cluster is a set of call-sites,
from the same source file, connected by the receivers they
have seen. For all pairs of call-sites A and B in a cluster,
they have either seen the same receiver or there exists a third
call-site C that has seen the same receiver as both A and B.

Typing the cluster in the code example above, we search
for a common supertype of T and T’ that contains all of
foo(), bar() and baz(), i.e., the union of the call-sites’
methods in the cluster. If such a type does not exist, the
cluster can not be typed. It can be argued that rejecting the
cluster in its entirety is a better approximation than claiming
66% of the method’s call-sites typeable.

D E F I N I T I O N 8 (N-typeable Cluster). A cluster is N-type-
able iff T’, the most specific common supertype of the types
of all receivers in all call-sites in the cluster, contains all the
methods called at all call-sites in the cluster.

For the cluster to be typeable with a structural type, all the
types (T and T’) seen at all call-sites (on line 3, 5 and 7) must
contain all the methods that were called at all call-sites in the
cluster (foo(), bar() and baz().

D E F I N I T I O N 9 (S-typeable Cluster). A cluster is S-type-
able iff the intersection of all types of all its receivers contains
all the methods called at all call-sites in the cluster.

Whereas considering individual call-sites may be overly
optimistic, considering clusters of call-sites may be overly
pessimistic. For the code example above, for example, we
would conclude that the cluster was neither N-typeable nor
S-typeable, since there exists no type T’’ that contain all
the three methods called at the cluster’s call-sites. A more
powerful type system might be able to capture this value-
based overloading, such as a system with refinement types.
Whether such a system used nominal or structural types is
insignificant in this case.

5. Results
This section presents the results from analysing 528 program
traces of the 36 Python programs in our corpus. The results
are grouped into the same categories that were presented in
§ 3; Program structure, Extent and degree and Typeability.

5.1 Program Structure
Classes in Python Programs The underlying dynamic
nature of Python affects the polymorphism of programs in
that classes are dynamically created and possibly modified
at runtime. The possibility to reload a class with a differ-
ent definition during runtime and the possibility that the
path taken through the program affects the numbers and/or
versions of classes that are loaded all contribute to the poly-
morphism of Python programs. This polymorphism makes it
more difficult to predict statically what types will be needed
to type the the program the next time it runs.

Our traces contained 31,941 unique classes. The source
code of the 36 programs contained the definition of 11,091
classes (libraries uncounted). The source of the individual
programs contain between 4 and 1,839 class definitions with
an average of 308 classes and a median of 129 classes and
(see Table 2).
With only three exceptions (Pychecker, Docutils and Eric4),
the number of classes loaded by the program was larger than
the number of classes defined in its source code. The number
of declared classes found in the source code can be found as
the first figure in the column titled “Class defs. top/nested”
in Table 2. That the number of classes used in a program
is larger than the number defined in the program’s code is
what should be expected since Python comes with a large eco-
system of libraries containing important utilities. The loading
of these library modules leads to loading and creation of
classes; classes that can not be found in the current program’s
source code. The exceptions (Pychecker, Docutils and Eric3)



Table 1. A list of the programs included in the study, sorted on size (see
Table 2). The third column contains the share of the call-sites that were
polymorphic + megamorphic (P+M), and the fourth one the share of these
P+M that were N-typeable (P+M N-t). The fifth column contains the share
of all call-sites that were N-typeable (N-t). Column 3-5 all contain figures
for whole programs. Column 6-7 contain P+M and N-t for program startup,
column 8-9 P+M and N-t for runtime, column 10 P+M for library code
and finally column 11 P+M for program specific code. All figures denote
the share of call-sites compared with the total numbers of call-sites in the
program traces, except column 4 (Typeable Poly (%)). Program version
numbers can be found in Table 4.

Whole Startup Runtime Lib. Prog.
P+M Typeable N-t P+M N-t P+M N-t P+M P+M

No. Name (%) Poly (%) (%) (%) (%) (%) (%) (%) (%)
1. Pdfshuffler 2.5 32.7 0.8 0.6 0.0 4.2 0.5 2.0 4.6
2. PyTruss 1.6 3.9 0.1 - - - - - -
3. Radiotray 1.6 18.8 0.3 1.5 0.0 1.7 0.4 1.8 0.0
4. Gimagereader 3.0 4.4 0.1 0.9 0.1 7.6 0.1 3.2 2.0
5. Ntm 1.1 3.8 0.0 1.2 0.0 1.0 0.0 1.3 0.2
6. Torrentsearch 12.4 4.6 0.6 4.9 0.5 15.1 0.6 - -
7. Brainworkshop 1.0 20.9 0.2 0.6 0.1 2.7 0.4 0.6 3.6
8. Bleachbit 4.2 6.8 0.3 3.4 0.3 7.5 0.2 2.5 9.7
9. Diffuse 1.5 0.6 0.0 0.8 0.0 2.1 0.0 12.4 2.5

10. Photofilmstrip 3.6 37.5 1.3 0.6 0.0 5.3 1.0 4.0 1.8
11. Comix 3.5 4.1 0.1 0.7 0.0 4.9 0.1 4.3 1.4
12. Pmw 3.1 49.0 1.7 - - - - - -
13. Requests 2.8 24.9 0.6 - - - - 3.3 2.9
14. Virtaal 2.5 18.1 0.5 1.4 0.0 3.0 0.4 2.5 2.5
15. Pychecker 1.5 8.7 0.3 - - - - 1.8 0.7
16. Idle 5.6 56.0 3.2 1.1 0.4 7.7 4.2 3.7 8.1
17. Fretsonfire 2.2 18.3 0.4 1.2 0.0 3.7 1.0 1.7 3.3
18. PyPe 2.5 17.8 0.4 1.3 0.7 4.5 1.1 2.1 4.8
19. PyX 3.5 33.9 1.2 - - - - 1.3 4.5
20. Pyparsing 5.7 72.0 4.1 - - - - 1.6 11.9
21. Rednotebook 1.4 3.7 0.1 1.2 0.0 1.8 0.0 1.5 1.3
22. Linkchecker 6.6 2.6 0.2 1.2 0.0 13.7 0.1 5.3 8.8
23. Solfege 2.8 41.4 1.2 1.2 0.0 3.6 1.5 1.3 3.9
24. Chilsdplay 4.1 33.9 1.4 0.9 0.0 6.3 3.3 1.7 8.5
25. Scikitlearn 3.1 60.9 2.1 - - - - - -
26. Mnemosyne 3.0 57.2 1.8 1.2 0.2 3.1 2.0 2.8 3.6
27. Youtube-dl 1.2 11.6 0.1 - - - - - -
28. Docutils 6.2 31.7 2.0 - - - - 2.2 8.7
29. Pymol 8.6 0.6 0.1 - - - - 10.7 4.4
30. Timeline 2.0 21.1 0.4 0.5 0.0 2.8 0.7 - -
31. DispcalGUI 2.9 15.5 0.4 0.8 0.0 4.1 0.6 2.1 4.2
32. Pysolfc 4.3 40.7 1.8 1.0 0.4 9.4 3.9 3.1 4.9
33. Wikidpad 3.9 23.5 0.9 2.6 1.1 5.3 0.5 3.8 6.7
34. Task Coach 6.4 37.1 2.4 - - - - 3.6 8.4
35. SciPy 6.8 42.4 2.8 - - - - 3.8 7.8
36. Eric4 2.2 37.0 0.8 1.7 0.6 3.2 0.8 1.6 2.5

Average 3.9 25.0 0.96 1.35 0.18 5.18 0.98 3.12 4.61

may be explained by the fact that each example that was
run for Pychecker and Docutils was small and focused on
explaining some specific part of the program functionality
and thus did not run all of the the programs. Eric4, in turn,
is an interactive program with large functionality and all
functions were not executed in each run of the program.

In most programs, one or a few of the classes were loaded
several times, but only in 9 of them, at least one reloaded
class had more than one set of defined methods (shown in
Col. “Int. diff. in Table 2). Out of these, only 4 had more
than 1 redefined class with more than one set of methods.
Scipy had 10 classes with multiple interfaces, SciKitLearn
and Mnemosyne had 4 each and TaskCoach had 2.

The dynamism of Python classes usually does not change
the interfaces of classes, but sometimes classes change during

Table 2. A list of the programs included in the study sorted on size
(LOC from the second column) with the smallest one at the top. The third
column shows the range (min-max number) of unique classes loaded when
the programs were run. The fourth column contains the number of class
definitions found in the source code of the programs and the number of class
definitions that were found in a nested environment (e.g. inside a method)
and the fifth the average number of method definitions loaded during the
program runs. The sixth column contains the average number of method
definitions loaded during a program run that were redefinitions of inherited
methods. The seventh column contains the number of classes that were found
defined with more than one interface (set of methods). The eighth and last
column contains the the percent of all classes that use multiple inheritance.

#Classes Class defs. Avg.# Avg.# Int. Mult.
Program LOC (range) top/nested meth. overr. diff. inh.(%)

1. PDF-Shuffler 1.0K 181-181 4/0 1.6K 0.2K 0 11.0
2. PyTruss 1.5K 731-745 19/0 11.4K 1.7K 0 3.1
3. Radiotray 1.5K 353-353 25/0 3.1K 0.4K 0 5.8
4. GImageReader 2.2K 361-361 15/0 2.8K 0.4K 0 3.5
5. Ntm 2.8K 239-239 10/0 2.0K 0.3K 0 5.4
6. TorrentSearch 3.0K 471-479 63/0 5.1K 0.5K 0 1.7
7. BrainWorkshop 3.6K 673-677 43/0 6.0K 0.7K 0 2.4
8. BleachBit 4.1K 249-250 39/2 2.0K 0.2K 0 5.9
9. Diffuse 5.6K 154-154 47/24 1.4K 0.1K 1 3.9

10. PhotoFilmStrip 6.1K 791-795 66/0 12.3K 1.9K 0 3.0
11. Comix 7.7K 287-308 45/0 2.3K 0.3K 0 3.3
12. Pmw 10.3K 97-113 41/0 1.2K 0.1K 0 8.5
13. Requests 11.2K 366-423 109/6 2.9K 0.5K 0 10.2
14. Virtaal 11.4K 644-654 133/18 13.7K 2.4K 0 3.2
15. Pychecker 12.7K 82-2180 311/35 2.0K 0.7K 0 5.6
16. Idle 13.0K 285-311 146/10 3.0K 0.4K 0 6.1
17. FretsOnFire 14.0K 772-797 365/8 2.8K 0.8K 1 7.2
18. PyPe 15.3K 891-891 320/30 7.2K 1.5K 1 5.8
19. PyX 15.8K 409-453 303/15 3.5K 0.5K 0 7.9
20. Pyparsing 16.6K 111-160 109/4 3.8K 0.6K 0 5.9
21. RedNotebook 17.4K 485-513 123/7 5.9K 1.2K 0 6.1
22. LinkChecker 20.6K 891-891 235/9 3.9K 0.7K 1 6.3
23. Solfege 20.7K 489-502 248/7 11.4K 2.4K 1
24. Childsplay 22.0K 929-957 233/16 8.2K 1.3K 0 8.4
25. ScikitLearn 22.5K 403-1208 184/11 8.9K 1.9K 4 3.0
26. Mnemosyne 26.8K 1237-1237 125/1 0.8K 0.2K 4 5.3
27. Youtube-dl 28.5K 672-702 416/8 4.9K 1.3K 0 3.2
28. Docutils 32.1K 45-1239 541/14 4.3K 1.7K 0 14.1
29. PyMol 35.2K 276-281 46/10 3.3K 0.4K 0 3.2
30. Timeline 42.3K 819-944 769/12 13.0K 2.1K 0 4.7
31. DispcalGUI 44.1K 1030-1030 180/11 14.9K 2.2K 0 3.9
32. PySolFC 61.9K 2143-2156 1839/7 14.1K 5.6K 0 3.0
33. WikidPad 84.9K 1185-1292 845/34 17.0K 2.7K 0 4.3
34. TaskCoach 101.5K 1848-2301 1230/69 22.7K 4.1K 2 9.3
35. SciPy 130.6K 1030-1777 1074/91 15.7K 2.9K 10 2.4
36. Eric4 177.3K 804-980 989/12 9.3K 1.1K 0 13.2

Averages 28.6K 623-793 314/13 6.9K 1.3K 0.7 5.8

runtime. This make types difficult to predict statically and
complicates typing of Python programs.

Old Style vs. New Style Classes As a result of the introduc-
tion of new-style classes, a Python class hierarchy has two
possible root classes. If old style classes can be found in cur-
rent programs, it would mean that the development of a type
system for Python needs to account for both of these root
classes. Python 3 abolishes old-style classes but has failed to
achieve the popularity of Python 2.6/7, possibly because of
its several backwards incompatibilities.

In our program traces, 22% of all classes were old style
classes. The programs were all but five initiated after 2001,
the year of the release of Python 2.2 which introduced the
new-style classes as a parallel hierarchy. As shown in Fig-
ure 5, there seems to be no correlation between the program’s
age and the percentage of old-style classes in the program.



Figure 2. For all programs the number of classes for which the class definition has been loaded more than once. Programs
sorted on size in LOC.



Figure 3. For all programs the average shares (in %) of the clusters that were single call and monomorphic.



Figure 4. Call-sites/receiver types.



Figure 5. The percentage of traced classes that were “old style”. Programs sorted on age with the oldest to the left and the
youngest to the right.



For the programs started before 2001, this likely means that
many old style classes have been changed into new style
equivalents (the use of old style classes has been strongly dis-
couraged). Many of the old-style classes were imported from
libraries, both standard libraries and third party libraries.

A pattern to reduce the amount of old-style classes found
in several programs in our corpus is the insertion of an
explicit derivation from object in addition to its old style
superclasses, which increases the use of multiple inheritance.

We conclude that the use of old-style and new-style
classes in parallel means that a type system for Python has
two choices: it either must account for two root classes, or it
must exclude (support for) old libraries and require changes
to commonly more than a fifth of all classes.

Use of Multiple Inheritance All programs use multiple in-
heritance, ranging from 2.4% to 17.5% of all classes with an
average of 5.9% (see Col. “Multiple Inheritance” in Table 2).
These are the figures after removing any multiple inheritance
due to the pattern for making old-style classes into new-style
classes mentioned above in Section § 5.1. Multiple inherit-
ance is found both in library classes and program-specific
classes. Classes used as superclasses in multiple inheritance
are also both library classes and program-specific classes.

5.2 Extent and Degree of Polymorphism
Overridding In our analysis to decide if a call-site is N-
typeable or NPP-typeable, (see Def. 5, Def. 6) we first look
for a common super type for all receiver types. If such a
type is found, the second step is to check if the method
called at the call-site can be found in that type. Thus, to be
be N-typeable or NPP-typeable, the program needs method
overriding. Such overriding is at times required in statically
typed code leading to the insertion of abstract methods to be
allowed to call methods on a polymorphic type1. Since there
is no such need in dynamically typed programs, this analysis
is in this respect a conservative approximation.

If the method has been overridden in all subclasses, execu-
tion of the call-site will lead to execution of different methods
with potentially different behaviour for every receiver type. A
program designed in this way is arguably more polymorphic
than if all executions of the call-site leads to a call to the same
method in the superclass. On the downside, method overrid-
ing makes code harder to read, understand and debug due to
the increased complexity of the control flow.

Column 6 (“Avg. # overr.”) in Table 2 shows the aver-
age number of overridden methods per program, that is the
number of methods that are redefinition of inherited methods.
Comparing with column 5 in the same table (“Avg. # meth.)
we can see that 19% of all methods are re-definitions of meth-
1 In a statically typed language, classes B and a class C both with a method
m() with a common supertype A, the supertype could be used as a static
type for objects of B and C, but we could not make calls to m() through a
variable declared as A unless A also contains a definition of m(). This way,
overriding is necessary in statically typed languages in a way that it is not
in a dynamic language.

Single call 50.6%
Monomorphic 45.4%

Polymorphic 4%

Figure 6. Distribution of call- sites between polymorphic, single call and
monomorphic in whole programs.

ods inherited from some superclass. This suggests that our
Python programs are quite object-oriented, and use its object-
oriented concepts similar to statically typed languages like
Java.

Individual Call-Site Polymorphism To give a high-level
overview of the polymorphism of a program, we classify call-
sites depending its measured degree of polymorphism. A call-
site is either monomorphic, polymorphic or megamorphic. A
fourth category, single call, was added to avoid classifying
call-sites observed only once as monomorphic.

For all program runs, the share of monomorphic call-sites
(including single call) ranged between 88–99% with an av-
erage of 96% (see Figure 6). This means that in most pro-
grams only a very small share of the call-sites exhibits any
receiver-polymorphic behaviour at all. To avoid wrongful
classifications due to bad input or non-representative runs,
all programs were run multiple times. The amount of mono-
morphic and single call call-sites did not vary significantly
between different runs of the same program, including uses
of the same library by different programs, as shown by the
error bars in Figure 8.

Single call call-sites accounted for 27–81% of the total
number of call-sites for all runs of all programs with an
average of 51% and a median at 49%.

Monomorphic call-sites are always typeable since all
receivers have the same run-time type. Single call call-sites
are typeable for the same reason, at least for that run of the
program. Many call-sites would still be single call even if
input was increased/made more complex, etc.

The table below shows the degree of monomorphism,
polymorphism and megamorphism for all the programs sor-
ted by increasing size (in terms of lines of code). There seems
to be no correlation between program size and the ration
of monomorphism, polymorphism and megamorphism. The
polymorphism for the smaller programs (numbers 1–18) is
similar to the polymorphism in the larger programs (num-
bers 19–36). We perform a t-test (two-tailed, independent,
equal sample sizes, unequal variance) with null hypothesis
that the average degree of polymorphism is the same in the
small programs and in the large programs. Column 5 con-
tains the result, confirming the hypothesis for all degrees of
polymorphism. All values are lower than (α=0.05,d.f.=17) =
2.110.

Figure 7 shows the maximal polymorphic degree for all
runs of all programs, ranging from 2 to 356 receiver types.
The average maximal polymorphic degree in the programs in



Figure 7. For all programs, the polymorphism max values.



Figure 8. For all programs the average shares (in %) of the call-sites that were single call and monomorphic. Error bars shows
the distance between max and min values. Sorted on size in LOC.



our corpus was 75 and the median 27. The blue dotted line
marks the border between polymorphism and megamorphism
at 5 receiver types. Only 3 programs contain no megamorphic
call-sites at all (Ntm 2, Comix 4 and RedNotebook 5).

7 of 36 programs had at least one call-site with a very high
number of receiver types—close to or above 10 times the
average maximum. The maximal degree of polymorphism in
these programs (PyTruss 355, Torrentsearch 279, Pychecker
355, Fretsonfire 356, Youtube-dl 321, TaskCoach 305 and
SciPy 253 respectively) was much higher than in the other
programs. There seems to be no correlation between program
size and the programs with high degrees of polymorphism.
The programs that contained the highest polymorphism are
distributed evenly over Table 1 which is sorted on program
size, although the concentration is somewhat higher at the
bottom of the table (larger programs). The programs with
highest maximum polymorphism are number 17, 15, 2, 27,
34, 6 and 35 (descending).

Column 2 of Table 1, “Whole – P+M %”, shows the pro-
portions of the call-sites that were polymorphic and mega-
morphic for each program (program averages). There is no
strong correlation between the size of the program and the
degree of polymorphism. The average of the upper half of
the table is 3.1%, the average for the lower part of the table
is 4.0% and the average for the whole is 3.5%. Which means
that the larger programs contain more polymorphism but the
difference is only 25.4%. Both the programs with the highest
share of polymorphic and megamorphic call-sites (Torrent-
search, 12%) and the program with the lowest share (Brain-
workshop, 1%) are small programs. They both have less than
5K lines of code, which is well below both the average and
the median sizes.

Cluster Polymorphism We apply the same classification
for individual call-sites to clusters. This reduces the size
of the single call category, as call-sites involving the same
receiver will be placed in a single cluster. The size of the
category is still large, which could suggest that it is common
to create objects and operate on them only once.

On average, 35% of all clusters are single call, ranging
from 20% in Youtube-dl to 58% in Pytruss as shown in Fig-
ure 3. The monomorphic clusters, shown in the same figure,
were on average 61% of all clusters for the programs, ranging

Table 3. Polymorphism of small/large programs in Table 2

Student’s t-test
(α=0.05,d.f.=17)

Prog. 1–18 Prog. 19–36 All = 2.110

Single call 49.7 50.4 50.1 -0.06
Monom. 46.9 45.3 46.1 0.02
Polym. (2) 2.3 2.9 2.6 0.02
Polym. (3) 0.52 0.45 0.47 0.001
Polym. (4) 0.17 0.27 0.23 0.005
Polym. (5) 0.10 0.10 0.14 0.003
Megam. 0.34 0.30 0.38 0.01

Table 4. A list of the programs, sorted on size (see Table 2), followed
by 7 columns showing the percent of the total amount of call-sites that were
single-call (S-C), monomorphic (Mono), or polymorphic to different degrees
up to megamorphic (types >5). Finally, in column 8, also the percent of the
megamorphic call-sites for every program that was found in library code.

Call-sites with N receiver types
Program name S-C Mono 2 3 4 5 >5 %Lib.

1. PDF-Shuffler 0.6.0 38% 59% 2% 0 <1% <1% 2% 100
2. PyTruss 80% 19% 1% <1% <1% <1% 1% 100
3. Radiotray 0.6 56% 43% 1% <1% <1% 0 <1% 100
4. GImageReader 0.9 51% 46% 2% 1% <1% <1% <1% 100
5. Ntm 1.3.1 56% 43% 1% 0 0 0 0 -
6. Torrent Search 0.11-2 27% 61% 7% 4% 1% <1% 1% 43
7. Brain Workshop 4.8.1 68% 31% 1% <1% <1% 0 <1% 100
8. BleachBit 0.8.0 46% 50% 3% <1% <1% <1% <1% 0
9. Diffuse 0.4.3 38% 61% 1% <1% 0 <1% <1% 0

10. PhotoFilmStrip 1.5.0 53% 44% 3% <1% <1% <1% <1% 100
11. Comix 4.0.4 48% 49% 3% <1% <1% 0 0 -
12. Python megawidgets 49% 48% 2% <1% <1% <1% <1% 99/-
13. Requests 2.2.1 58% 39% 3% <1% <1% <1% <1% 1
14. Virtaal 0.6.1 47% 50% 2% <1% <1% <1% <1% 95
15. Pychecker 0.8.18-7 56% 42% 2% <1% <1% <1% <1% 100
16. Idle 2.6.6-8 37% 57% 5% 1% <1% <1% <1% 100
17. Frets on fire 1.3.110 59% 39% 1% <1% <1% <1% 1% 89
18. PyPe 2.9.4 54% 43% 2% <1% <1% <1% <1% 58
19. PyX 0.10-2 53% 43% 3% <1% <1% <1% <1% 0
20. Python parsing 1.5.2-2 42% 52% 2% 1% <1% <1% 2% 0
21. RedNotebook 1.0.0 50% 49% 1% <1% <1% <1% 0 -
22. Link checker 5.2 48% 45% 4% 1% <1% <1% <1% 28
23. Solfege 3.16.4-2 39% 58% 2% <1% <1% <1% <1% 6
24. Childsplay 1.3 45% 51% 3% 1% <1% <1% <1% 19
25. Scikit Learn 0.8.1 54% 43% 2% <1% <1% <1% <1% 1
26. Mnemosyne 2.1 57% 40% 2% <1% <1% <1% <1% 84
27. Youtube-dl 2013.01.02 76% 22% 1% <1% <1% 0 <1% 69
28. Docutils 0.7-2 43% 49% 5% 1% <1% <1% 1% 1
29. PyMol 1.2r2-1.1+b1 40% 50% 7% <1% 2% <1% <1% 100
30. Timeline 1.1.0 47% 51% 1% <1% <1% <1% <1% 100
31. DispcalGUI 1.2.7.0 47% 50% 2% <1% <1% <1% <1% 50
32. PySolFC 2.0 56% 40% 2% 1% <1% 1% 1% 26
33. WikidPad 2.1-01 45% 51% 3% <1% <1% <1% <1% 10
34. Task Coach 1.3.22 42% 51% 4% 1% <1% <1% 1% 10
35. SciPy 0.7.2+dfsg1-1 44% 49% 5% 1% <1% <1% 1% 54
36. Eric4 4.5.12 62% 36% 2% <1% <1% <1% <1% 0

Averages 50% 46% 2.6% <1% <1% <1% <1% 52

from 46% in Pychecker to 77% in Youtube-dl. The single call
is lower for the cluster analysis and the monomorphic higher,
compared to the call-site analysis. The overall result is that
the monomorphic share of is slightly lower for clusters than
for call-sites, on average 95.2% (0.8%).

Most clusters are small, 59% contained only 1 call-site2

(which may have been observed multiple times with possibly
different receiver types). The largest cluster had 2.720 call-
sites. The average cluster size was 5.

Degree of Polymorphism at Individual Call-sites The de-
gree of polymorphism at a call-site is the number of different
receiver types we observed at that call-site.

Figure 4 shows the degree of polymorphism for all poly-
morphic and megamorphic call-sites. In Figure 7 and in Fig-
ure 4, the border between polymorphism and megamorphism
is represented by the dotted line. The vast majority, 88%, of
all polymorphic and megamorphic call-sites are not mega-
morphic (69,367 polymorphic against 7,870 megamorphic).

2 This means that in a source file there was just one single place that
manipulated (a) certain value(s).



Figure 9. Polymorphic degree of the clusters of polymorphic and megamorphic clusters.



Figure 10. N-Typeable call-sites.



Figure 11. N-Typeable, single call and monomorphic call-sites.



Figure 12. The % of all clusters that were S-Typeable.



78% of the polymorphic call-sites had a polymorphic degree
of 2, that is two different receiver types.

While these numbers show that megamorphic call-sites
are relatively rare, they are not concentrated to specific pro-
grams. Almost all programs (33 of 36) exhibited some form
of megamorphic behaviour, see Table 4, Column 9, “Call-
sites with N receiver types>5”. The programs without mega-
morphic call-sites were Ntm, Mcomix and Rednotebook. In
83% of all programs (30 out of 36), 1% or less of all call-
sites were megamorphic. The largest share of megamorphic
call-sites, 2%, were seen in PdfShuffler and Python parsing.

Manual Inspection To better understand their nature, we
investigated the receiver types of the extremely megamorphic
call-sites for the five programs with the highest mega-
morphic maximum value (Pytruss, Torrentsearch, Frets on
fire, Youtube-dl and Scipy)

In two of these programs (Pytruss, Frets on fire), the same
OpenGL library was the main cause of megamorphism and
all call-sites of degree >10 (Pytruss) or >50 (Frets on fire)
originated from calls on OpenGL objects. Frets on fire also
had some very program-specific receivers in megamorphic
call-sites such as songs, menus, etc., related to the game.

For Torrentsearch and Youtube-dl, the megamorphism
stemmed from the singleton class implementation of the
representation of different torrent sites or sites from which
content could be downloaded. For Youtube-dl, the mega-
morphism also varied a lot between runs.

The very high megamorphic values in SciPy with degrees
>100 were all caused by testing frameworks (the built-in
unittest or the nose unit test extension framework). All
call-sites with a megamorphic degree <100 and >22 were
either part of the testing frameworks or used to create distri-
butions using generator classes. The call-sites with a mega-
morphic degree <23 and >5 often used arguments of differ-
ent classes to handle different shapes or components used to
create plots.

From the manual inspection, it seemed that to a large ex-
tent, megamorphism is due to patterns emerging from con-
venience (the simplicity to create specific, singleton classes
at run-time in Python), and not from an actual need to cre-
ate widely different unrelated classes. Thus, in many cases,
it is possible to reduce megamorphism by redesigning how
classes are used. Nevertheless, the proliferation of mega-
morphism (by convenience or not) must be considered by
retrofitted type systems for Python.

Degree of Polymorphism in Clusters The degree of poly-
morphism in a cluster is the number of receiver types we
observed at that call-site.

Figure 9, shows the degree of polymorphism for all poly-
morphic and megamorphic clusters. The border between
polymorphism and megamorphism is represented by the
dotted line. Similar to the call-sites, the majority, 67%,
of all polymorphic and megamorphic clusters are non-

megamorphic. 42% of the polymorphic call-sites had a poly-
morphic degree of 2 (i.e., two different receiver types).

Polymorphism in Library Code vs. Program-specific The
columns under “Lib.” and “Prog.” in Table 1 shows the
share of all call-sites from library code and program specific
code that were polymorphic or megamorphic. Assuming that
polymorphism on average does not differ between library
code and program-specific code we ran a statistical test (a
Student’s t-test, two-tailed, independent, equal sample sizes,
unequal variance) comparing all data all 28 programs where
the separation of libraries and program-specific code was
made. The result was that the hypothesis holds for all of the
programs. For α=0.05, and a degree of freedom that ranges
from 1 to 56, and a p-value ranging from 1.98 to 12.706, the
t-values ranged from -0.44 to 0.12.

To uncover differences between megamorphism in lib-
raries and program code, we manually inspected all mega-
morphic call-sites of all programs to see if they were found
in libraries or in program-specific code. No clear pattern
emerged and, on average, 59% of the megamorphic call-sites
originated from library code. As shown in the last column
of table Table 1, the share varied from 0 to 100%. For 10 of
the programs (28%) all megamorphism stemmed from lib-
rary code. Only 5 programs had none of their megamorphic
call-sites in the library code (14%).

Polymorphism at Start-up vs. Runtime Using the marker
we inserted in all programs to separate the programs’ start-
up time from the actual runtime, we separated the trace data
gathered during start-up from that gathered during “normal
program execution”. This was only done for interactive pro-
grams (24/36) as it was relatively easy to identify the end of
the start-up for those programs as the time control is handed
over to the main event loop waiting for user input. Remain-
ing programs are marked with a “–” in the columns under
“Startup” and “Runtime” in Table 1. Assuming first that poly-
morphism does not differ between start-up and runtime we
ran a statistical test comparing all runtime data to all start-up
data for all 24 programs where the separation of runtime and
start-up data was done (a Student’s t-test, two-tailed, inde-
pendent, equal sample sizes, unequal variance). This test, and
the assumption, fails for all but one of the tested programs.
Since the t-values in all cases except one (23/24) are negative
we conclude that the average polymorphism during startup is
lower than the average polymorphism during runtime.

Notably, all program traces contain a lower degree of poly-
morphic and megamorphic call-sites during start-up com-
pared the whole program run. This is an interesting find given
that RPython [4] is based on the idea that programs are more
dynamic during start-up, limiting the use of the more dy-
namic features of Python to an initial, bootstrapping phase.
About 1% of the call-sites seen at start-up were polymorphic
or megamorphic. During normal program execution, on aver-
age, 5% of all call-sites were polymorphic or megamorphic.



Figure 13. NPP-Typeable call-sites.



Figure 14. NPP-Typeable, single call and monomorphic call-sites.



Figure 15. The % of all clusters that were N-Typeable.



5.3 Typeability
We applied our three metrics for approximating typeability
using nominal, nominal and parametrically polymorphic, and
structural typing to the call-sites and clusters in our trace logs.

N-Typeable Call-sites Figure 10 shows the percentage
of all call-sites that were polymorphic or megamorphic
and N-typeable. In Figure 10 as well as in column 4
(“Whole program”/“N-t”) of Table 1, all programs contain
call-sites that are N-typeable, although the N-typeable share
of the call-sites is always low. In column 3 (“Whole pro-
gram”/“Typeable Poly”) of Table 1 we see the N-typeable
shares of the non-monomorphic parts of the programs. The
dashed line in Figure 10 marks the average value at 0.96%.
The program with the highest amount of N-typeable call-
sites was Pyparsing with 4.11%, which also had the highest
N-typeability share, 72.0%, when considering only non-
monomorphic call-sites.

The average of the upper half of Table 1 (the smaller
programs), was 0.9%. The programs in the lower half of the
same table (the larger programs) had a slightly higher average
for the N-typeability (1.1%).

Figure 11 shows the amount of N-typeable call-sites on
top of the shares of monomorphic (which are always type-
able) and the single call (which are typeable for this run of the
program). In combination, they can be used to type between
88.1% and 99.9% of the call-sites, with an average at 97.4%.

In conclusion, most call-sites in Python programs are not
polymorphic or megamorphic, but when they are, our simple
and conservative nominal types cannot in general be used to
type them.

NPP-typeable Call-sites All call-sites that are N-typeable
(see Def. 5) are also NPP-typeable (see Def. 6), but the
NPP-typeability analysis increases our possibilities to find
typeable call-sites.

All call-sites in the programs, that were not N-typeable,
were sorted and separated on the identity of the caller, that is
the identity of self at the time when the call was made. After
this separation, we again search for a common supertype for
all receiver types and if found check if that supertype contains
the method called at the call-site.

Figure 13, shows for each program the percentage of all
call-sites that were polymorphic or megamorphic and NPP-
typeable. All programs contain call-sites that are N-typeable,
and we for all programs find that they are NPP-typeable to
a higher extent than they are N-typeable. The dashed line in
Figure 13 marks the average value at 1.34%. As was the case
for our N-typeable analysis, the program with the highest
amount call-sites was Pyparsing also for the NPP-typeability
analysis, with 4.31%.

Figure 14 shows the amount of NPP-typeable call-sites
on top of the shares of monomorphic (which are always
typeable) and the single call (which are typeable for this run
of the program). In combination, they can be used to type

between 88.9% and 100% of the call-sites, with an average
at 97.8%.

By extending the nominal type system with parametric
polymorphism, we can type more call-sites for all programs.
For one program, Frets on Fire, we could even type all
call-sites. But for the rest of the programs, our simple and
conservative nominal types are not powerful enough even
when extended with parametric polymorphism.

N-Typeable Clusters The figures reported in this section
to this point are optimistic as they only consider individual
call-sites. We apply the same analysis to clusters of call-sites
as discussed in § 4.

For all the polymorphic and megamorphic clusters, we
search for a common supertype among the receiver types
that contains all methods called in the call-sites of the cluster.
If the methods were found, the cluster is N-typeable (see
Def. 8).

Figure 15, shows the results of applying our N-typeability
analysis on all polymorphic or megamorphic clusters. The
staples represent the % of all clusters that were N-typeable
and the dashed blue line marks the average at 0.4%. The
highest typeability, 1.1% was found in Torrentsearch, and the
lowest, 0% in both Mnemosyne and Comix. This result is, as
expected, lower compared to the N-typeability analysis we
made for call-sites.

When we combine the N-typeability with the single call
and monomorphic clusters, as shown in Figure 16, between
91.9% and 97.8% of the call-sites are typeable in the 36
programs, with an average at 95.6%. This result is lower than
the typeability we reached for call-sites, as expected.

In conclusion, clusters in the programs of our corpus are
predominately monomorphic or single call. When a cluster
is polymorphic or megamorphic, nominal types cannot in
general be used to type them.

S-Typeable Clusters The shares of program clusters that
were S-typeable (Def. 9) are shown in Figure 12. On average,
1.6% of all the clusters are S-typeable, with a minimum at
0.4% in Pype and a maximum at 3.7% in Diffuse.

As with nominal typing, we can combine the S-typeable
clusters with single call and monomorphic clusters to find
out how large parts of the programs we could type in total.
Figure 17 show the results. Combined, these three typeable
shares give a typeability of 96.7%, on average. Lowest in
BleachBit with 94.8% and highest in PyChecker with 98.4%.

Unsurprisingly S-typeability analysis for clusters gives a
higher overall typeability (12.0% higher) than achieved with
N-typeability, but no program can be typed to more than
98.4%. Again, monomorphism dominates the programs. The
small parts that are polymorphic and megamorphic cannot be
typed entirely using a structural approach.

6. Threats to Validity
Validity of our findings is affected by several decisions and
choices. The program selection was not made entirely at ran-



Figure 16. N-Typeable, single call and monomorphic clusters.



Figure 17. S-Typeable, single call and monomorphic clusters.



dom, which might lead to that the programs are not repres-
entative for Python programs in general. Generating repres-
entative runs for a particular program requires representative
input. Many programs are very large, and since we do not
have coverage measurements, we do not know to what extent
the source code of the programs was executed. Especially
program parts that are used less frequently e.g., parts of pro-
grams checking for updates and installing updates have prob-
ably not been run. An approximate coverage measurement
would be to compare the number of call-sites in the code
with the number of call-sites visited by a trace, but it would
be very rough so we have not included it.

Our typeability analyses are based on receiver types at call-
sites and clusters. Individual call-sites is very fine-grained
and clusters may be too coarse-grained. The individual call-
site analysis will likely over-estimate typeability since it does
not consider connected call-sites. Similarly, cluster analysis
will under-estimate typeability by connecting call-sites too
greedily (e.g., due to value-based overloading) forcing them
to be typed together. We believe that the two approached
function as upper and lower bound for (our definitions of)
typeability.

Static typing is difficult in the presence of powerful reflect-
ive support for non-monotonic changes to classes at run-time.
Although we found no use of this in our corpus, Python, for
example, allows assigning the __class__ variable of an ob-
ject, thereby changing its class. Prior work by ourselves [2]
and others [19] investigate the actual usage of such mechan-
isms in Python and conclude that, although not very common,
programs actually contain code of this kind. Our typeability
analyses do not consider this, leaving this for future work.

In this paper we set out to understand how structural and
nominal types can be used to type untyped Python code with
respect to polymorphism. Clearly, an actual implementation
of static typing must consider use of reflection. We leave the
decision of what strategy to employ (run-time detection, con-
straining of Python’s reflective protocol, etc.) to the designers
of such systems.

7. Related Work
The idea to study real programs to understand how languages
are used and then use the knowledge for designing better
languages and tools is not a new one. In 1971, Knuth studied
how Fortran programs were written to make new guidelines
for compiler designers [22].

Many efforts have later been presented, for several dif-
ferent dynamic languages, to increase our understanding for
how dynamic languages are used in practice. We have seen
the study of use of dynamic features by Holkner and Harland
[19], where they study the use of e.g., reflection, changes
made to objects at runtime (adding/removing attributes, etc.),
variables that are used to point out objects of different types,
and dynamic code evaluation in 24 Python programs. This
work is based on two assumptions; first that Python programs

do not generally contain much use of dynamic features and
if use of dynamic features can be found it will be easy to
rewrite in a more static style, and second that if use of dy-
namic features is found it will be found during start-up. The
first assumption was found to be false and the second to be
true. Their study was trace-based and operated at byte-code
level, whereas our approach has been to modify the inter-
preter to produce log files in plain text format. In comparison
with the work done by Holkner and Harland our approach
has no noticeable impact noticeable impact on the programs’
performance and the logs produced are manageable in size.
Both performance and log file sizes were problematic for
Holkner’s & Harland’s study. Their goal is similar to what
we are aiming to achieve with this study, but do they not
consider method polymorphism.

Another study with a similar goal has been made for
Smalltalk where Callaú et al [8] first made a static analysis
of 1.000 Smalltalk programs to see which dynamic features
were used, how frequent the use is and where in the programs
the use could be found. They then studied code to understand
why the features were used. Their results were that dynamic
features are used sparsely although not seldom enough to be
disregarded, that the use of dynamic features is more com-
mon in some application areas, that the dynamic Smalltalk
features that have been included also in statically typed lan-
guages like Java are the most popular features, and that use of
dynamic features to some extent can be replaced with more
statically checkable code. The studies of code revealed that
the majority of the use of dynamic features was benefiting
from their dynamic nature and would be impossible to re-
place with more static code, but some use of dynamic features
were really a sign of limitations in the language design that
programmers solved by using unnecessarily dynamic solu-
tions. These cases could be rewritten without dynamic fea-
tures but the code would get more complex. Yet other uses of
dynamic features could be replaced by less dynamic code. In
this study, most of the programs were only studied statically
and polymorphism was never considered.

Lebresne et al. [24] and Richards et al. [27] have done a
similar study for JavaScript where the interaction with 103
web sites was traced and three common benchmark suites
analysed. Common assumptions about JavaScript programs
are listed and the goal of the paper is to find support for or
invalidate these assumptions. Results from the analysis show
that the programs use dynamic features and that the divi-
sion into an initialisation phase and a division of program
runs into different phases is less applicable for JavaScript,
since e.g., objects are observed to have properties added or re-
moved long after initialisation. One of the assumptions used
as a starting point for the study was that call-site polymorph-
ism would be low. Their result was that 81% of all call-sites
were monomorphic, which is less than the 96% we have ob-
served for Python programs (see Table 1). Our study was also



similar to theirs in that they also examined the receivers of
the call-sites.

Method polymorphism in particular has been studied in
the context of inline caching and polymorphic inline caching
in Smalltalk [12] and Self [20]. Polymorphic inline caching
in Smalltalk has a reported 95% hit frequency with a size
one cache [12], suggesting that Smalltalk call-sites are either
relatively monomorphic, or that call-sites are executed often
between changes to receiver types. (However unlikely, a
Smalltalk program may have a 95% hit frequency while still
having 100% megamorphic call-sites.) Our Python-specific
result is similar, and has a stronger bearing on the typeability
of whole programs as we consider polymorphism in clusters
of call-sites. In Hölzle’s et al. work on Self [20], the number
of receiver types in a call-site are usually lower than 10. In
our study, 88% of all call-sites have 5 or fewer receiver types.

Other related work include initiatives to build type or type
inference systems for dynamic languages starting in func-
tional languages based on the work of Hindley, Milner and
Damas [13]. The use of inferred types has been successfully
implemented in languages like ML and Haskell.

Type inference for object-oriented languages, on the
other hand, turned out to be more complex and computa-
tionally demanding as in Suzuki’s case where the infer-
ence algorithm [34] failed because of the Smalltalk envir-
onment’s restriction on the number of live objects. His work
was followed up more successfully by others both in Small-
talk [6, 16, 26] and other object-oriented languages. Type
inference for Smalltalk was mainly motivated by increased
reliability although readability and performance often also
are mentioned as other expected improvements.

Following Smalltalk, Diamondback Ruby [15] focuses
on finding and isolating errors by combining inferred static
types with type annotations made by the programmer where
annotated code is excluded from type inference and its types
will be checked at runtime. The type system was tested on a
set of benchmark programs of 29–1,030 LOC and proved to
be useful for finding errors.

Type inference systems implemented for Python have
often focused on improving performance rather than program
quality aspects as reliability or readability.

Aycock’s aggressive type inference [5] was designed as
a first step towards translating Python code to Perl. The
aggressiveness is expressed in that the program has to adhere
to the restriction rules for how Python programs may be
written for the type inference to work. e.g., runtime code
generation is not allowed, and types for local variables must
not change during execution.

Following this, also targeting performance but without re-
strictions for the language, Cannon first [9] thoroughly dis-
cusses difficulties met when implementing type inference
for Python and then presents a system for inferring types in
a local name-space. Tests show that performance improve-
ments were around 1%.

Recently, the work on type inference for Python has been
dominated by the PyPy initiative, originally aiming to imple-
ment Python in Python. PyPy uses type inference in RPython,
the restricted version of the language that is used to imple-
ment the interpreter [4].

Types inferred for object-oriented languages are often
nominal [4, 9, 26] but there are other solutions, like Strongtalk
[6] that infers structural types and DRuby where class (nom-
inal) types are combined with object (structural) types.

8. Conclusions
Our results show that while Python’s dynamic typing allows
unbounded polymorphism, Python programs are predomin-
antly monomorphic, that is, variables only hold values of a
single type. This is true for program start-up and normal
runtime, in library code and in program-specific code.

Nevertheless, most programs have a few places which
are megamorphic, meaning that variables in those places
contain values of many different types at different times or in
different contexts. Smaller programs do not generally differ
from larger programs in this.

Because of the high degree of monomorphism, most pro-
grams can be typed to a large extent using a very simple type
systems. Our findings show that the receiver in 97.4% of all
call-sites in the average program can be described by a single
static type using a conservative nominal type system using
single inheritance. If we add parametric polymorphism to
the type system, we increase the typeability to 97.9% of all
call-sites for the average program.

For clusters, the receiver objects are typeable using a
conservative nominal type system using single inheritance
to 95.6% (on average). If we instead use a structural type, the
typeability increases somewhat to 96.7% (on average).

Most polymorphic and megamorphic parts of programs
are not typeable by nominal or structural systems, for ex-
ample due to use of value-based overloading. Structural typ-
ing is only slightly better than nominal typing at handling
non-monomorphic program parts. This suggests that nominal
and structural typing is not a deciding factor in type system
design if typing polymorphic code is desirable. More power-
ful constructs are needed in these cases, such as refinement
types. We will investigate this in future research.
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