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“Historically” in Language Research

• Type inference (Smalltalk, Various Python projects, Diamondback Ruby)
• Gradual typing 
• Soft typing
• Pluggable types

• Generally tries to make dynamic languages more “controllable” and 
predictable, that is static

• Assumptions are made about programs
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Approaches used before

Selected examples:
• “Usually, no further properties are defined 

after the initialization and the type of the 
properties rarely changes.”                         
-- Peter Thiemann

• “Giving people a dynamically-typed 
language does not mean that they write 
dynamically-typed programs”                      
-- John Aycock

• “Yet while the presence of such abundant 
dynamism makes traditional static 
optimization impossible, in most 
programs, there is surprisingly little 
dynamism present.”                                    
-- Michael Salib 3
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Approaches used before

True?
We don’t know
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When/Where, How & Why (if at all) 

is the dynamic power of dynamic 

languages used in

real applications?
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What’s Dynamic?

• Duck typing  - polymorphism without need for inheritance or declared 
interfaces 

• Dynamic features - introspection, reflection, reification
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do variables change type?
will different paths lead to different types? 
how polymorphic are method calls?
can common supertypes be found?
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What’s Dynamic?

• Duck typing  - polymorphism without need for inheritance or declared 
interfaces 

• Dynamic features - introspection, reflection, reification
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what is the program?
do our objects reflect the classes?
how dynamic are variable accesses, etc?
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Why is this important?

We’ll be able to:

• know how much of a “typical” 
Python program could be annotated 
with types

• know how well Python source code 
does represent the running program

• know to what extent we need to 
support dynamic behaviour e.g. 
when building tools or new language 
constructs for Python

• emphasize the focus on how Python 
is used when designing new 
constructs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
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• Programs (Quantitative)
– Static analysis (what is the program?)
– Dynamic analysis: Measure behaviour at runtime, e.g. use of language 

constructs, inheritance hierarchies, polymorphic call sites, etc.
• Code snippets (Qualitative)

– Search for language constructs usage patterns
– Read to understand how/why

• Programmers (Sociological)
– Interview
– Observe
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Different Sources, different methods
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Different Sources, different methods

Program
traces

Code

Quantitative
data

Code as
qualitative
data

Statistical
analysis

Select 
parts of

Qualitative
analysis

Comparison 
of results
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What Have We Done?

• Modified the Python 2.6 interpreter to log information about running 
programs 
– method and function calls
– instance member access
– use of dynamic features

• Python programs selected from Source Forge
• Programs run on a Debian machine 

– interactive
– tests
– examples

• Program runs documented 
– tests
– recordings
– use cases
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Dynamic Features in Python Programs

• Anomos, Bleachbit, Comix, ConvertAll, Exaile, Kodos, Mcomix, Pysolfc, 
Rednotebook, Retext, Sbackup, Solfege, Task coach, Torrent Search, 
Wikidpad, Zmail

• hasattr, eval, reload, getattr, __delattr__, __getattr__, execfile, 
__getattribute__, del attribute, __import__, exec, setattr, vars, 
__setattr__, delattr

0: Id-nummer
1: the path, filename and row number from which the call was made, 
2: Caller id.
3: Caller type.
4: Target Id
5: Target type
6: Feature name
7: Argument types
8: Results
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Number of Features Used by Programs

14Chart by Jonatan Stendahl och Mattias Tumlin
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When and Where?

15Charts by Jonatan Stendahl och Mattias Tumlin
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Polymorphism in Python Programs

• Task Coach, SciPy, Pootle, Virtaal & the Translate Toolkit, PhotoFilmStrip, 
Brain Workshop, Eric4, PyMol, Childsplay, GNU Solfege, WikidPad, 
BleachBit, Mnemosyne, RedNotebook, DispcalGUI, Scikit Learn, Python 
parsing module, PDF-Shuffler, Link checker, Mcomix, Python 
megawidgets, Autocomplete for Notepad++, PyTruss, Idle, Radiotray

0. Event ID
1. Source file path
2. Caller ID (current this at the call-site)
3. Caller type
4. Target ID (the receiver of the method call)
5. Class name of target + : + class id
 6. Name of called function/method
7. Argument types
8. Call line 
9. A list of all super classes of the target type
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Questions Asked

• How many unique call-sites?
• How many call-sites are monomorphic? 

– Trivially monomorphic vs. monomorphic
• How many polymorphic call-sites?
• Distribution of the degree of polymorphism seen

• For call-sites that saw several different types as receiver, what were the 
types and do they share a common supertype containing the method 
called?
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Monomorphic Call Sites

• Trivially monomorphic: We have only recorded one single execution of 
this call site

• Monomorphic: We have recorded more than one execution of this call 
site, and the types seen were almost the same (or the same set)
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How Polymorphic are Python Call Sites?
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How Polymorphic are Python Call Sites?
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Number of type sets

Number
 of 
call 
sites
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What do you think we would find if 

we did the same thing for Ruby?
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