
Dynamic Languages in
Practice

Python Dynamicity & Other Ideas

Beatrice Åkerblom

Department of Computer and Systems Sciences
Stockholm University
 beatrice@dsv.su.se

Thursday, October 31, 13

“Historically” in Language Research

• Type inference (Smalltalk, Various Python projects, Diamondback Ruby)
• Gradual typing
• Soft typing
• Pluggable types

• Generally tries to make dynamic languages more “controllable” and
predictable, that is static

• Assumptions are made about programs

2

Thursday, October 31, 13

Approaches used before

Selected examples:
• “Usually, no further properties are defined

after the initialization and the type of the
properties rarely changes.”
-- Peter Thiemann

• “Giving people a dynamically-typed
language does not mean that they write
dynamically-typed programs”
-- John Aycock

• “Yet while the presence of such abundant
dynamism makes traditional static
optimization impossible, in most
programs, there is surprisingly little
dynamism present.”
-- Michael Salib 3

Thursday, October 31, 13

4

Selected examples:
• “Usually, no further properties are defined

after the initialization and the type of the
properties rarely changes.”
-- Peter Thiemann

• “Giving people a dynamically-typed
language does not mean that they write
dynamically-typed programs”
-- John Aycock

• “Yet while the presence of such abundant
dynamism makes traditional static
optimization impossible, in most
programs, there is surprisingly little
dynamism present.”
-- Michael Salib

Approaches used before

True?
We don’t know

Thursday, October 31, 13

When/Where, How & Why (if at all)

is the dynamic power of dynamic

languages used in

real applications?

5

Thursday, October 31, 13

What’s Dynamic?

• Duck typing - polymorphism without need for inheritance or declared
interfaces

• Dynamic features - introspection, reflection, reification

6

do variables change type?
will different paths lead to different types?
how polymorphic are method calls?
can common supertypes be found?

Thursday, October 31, 13

What’s Dynamic?

• Duck typing - polymorphism without need for inheritance or declared
interfaces

• Dynamic features - introspection, reflection, reification

7

what is the program?
do our objects reflect the classes?
how dynamic are variable accesses, etc?

Thursday, October 31, 13

Why is this important?

We’ll be able to:

• know how much of a “typical”
Python program could be annotated
with types

• know how well Python source code
does represent the running program

• know to what extent we need to
support dynamic behaviour e.g.
when building tools or new language
constructs for Python

• emphasize the focus on how Python
is used when designing new
constructs

8

Thursday, October 31, 13

Why is this important?

We’ll be able to:

• know how much of a “typical”
Python program could be annotated
with types

• know how well Python source code
does represent the running program

• know to what extent we need to
support dynamic behaviour e.g.
when building tools or new language
constructs for Python

• emphasize the focus on how Python
is used when designing new
constructs

9

Text

Text

Text

Text

Thursday, October 31, 13

• Programs (Quantitative)
– Static analysis (what is the program?)
– Dynamic analysis: Measure behaviour at runtime, e.g. use of language

constructs, inheritance hierarchies, polymorphic call sites, etc.
• Code snippets (Qualitative)

– Search for language constructs usage patterns
– Read to understand how/why

• Programmers (Sociological)
– Interview
– Observe

10

Different Sources, different methods

Thursday, October 31, 13

Different Sources, different methods

Program
traces

Code

Quantitative
data

Code as
qualitative
data

Statistical
analysis

Select
parts of

Qualitative
analysis

Comparison
of results

11

Thursday, October 31, 13

What Have We Done?

• Modified the Python 2.6 interpreter to log information about running
programs
– method and function calls
– instance member access
– use of dynamic features

• Python programs selected from Source Forge
• Programs run on a Debian machine

– interactive
– tests
– examples

• Program runs documented
– tests
– recordings
– use cases

12

Thursday, October 31, 13

Dynamic Features in Python Programs

• Anomos, Bleachbit, Comix, ConvertAll, Exaile, Kodos, Mcomix, Pysolfc,
Rednotebook, Retext, Sbackup, Solfege, Task coach, Torrent Search,
Wikidpad, Zmail

• hasattr, eval, reload, getattr, __delattr__, __getattr__, execfile,
__getattribute__, del attribute, __import__, exec, setattr, vars,
__setattr__, delattr

0: Id-nummer
1: the path, filename and row number from which the call was made,
2: Caller id.
3: Caller type.
4: Target Id
5: Target type
6: Feature name
7: Argument types
8: Results

13

Thursday, October 31, 13

Number of Features Used by Programs

14Chart by Jonatan Stendahl och Mattias Tumlin

Thursday, October 31, 13

When and Where?

15Charts by Jonatan Stendahl och Mattias Tumlin

Thursday, October 31, 13

Polymorphism in Python Programs

• Task Coach, SciPy, Pootle, Virtaal & the Translate Toolkit, PhotoFilmStrip,
Brain Workshop, Eric4, PyMol, Childsplay, GNU Solfege, WikidPad,
BleachBit, Mnemosyne, RedNotebook, DispcalGUI, Scikit Learn, Python
parsing module, PDF-Shuffler, Link checker, Mcomix, Python
megawidgets, Autocomplete for Notepad++, PyTruss, Idle, Radiotray

0. Event ID
1. Source file path
2. Caller ID (current this at the call-site)
3. Caller type
4. Target ID (the receiver of the method call)
5. Class name of target + : + class id
 6. Name of called function/method
7. Argument types
8. Call line
9. A list of all super classes of the target type

16

Thursday, October 31, 13

Questions Asked

• How many unique call-sites?
• How many call-sites are monomorphic?

– Trivially monomorphic vs. monomorphic
• How many polymorphic call-sites?
• Distribution of the degree of polymorphism seen

• For call-sites that saw several different types as receiver, what were the
types and do they share a common supertype containing the method
called?

17

Thursday, October 31, 13

Monomorphic Call Sites

• Trivially monomorphic: We have only recorded one single execution of
this call site

• Monomorphic: We have recorded more than one execution of this call
site, and the types seen were almost the same (or the same set)

18

Thursday, October 31, 13

How Polymorphic are Python Call Sites?

19
Text

Thursday, October 31, 13

How Polymorphic are Python Call Sites?

20

Number of type sets

Number
 of
call
sites

Thursday, October 31, 13

What do you think we would find if

we did the same thing for Ruby?

21

Thursday, October 31, 13

22

Thursday, October 31, 13

