Ruby, cont’d

Ruby, with foxes

why's (poignant) Guide to Ruby

nicrogeepicy A
OrY g) -

Riedl 3

o t’"r’fc}z:ré

s .)

G veritsle 1)
o0

of Lifea

® Ruby “explained” through humorous and
more or less irrelevant stories about
foxes, elfs, cats and others

Warning

If I was put off Ruby by the hype, | was put off
more by the many cutesy introductory tutorials |
encountered when trying to get into it. Why’s
(Poignant) Guide is a particular horrid example,
but there are many others. Sorry, if 'm getting
into a new language, | don’t want to be
patronised in this way. | don’t want someone
chatting away to me and telling me how "cool” it
all is (I've lived long enough as a computer
programmer to know it’ll never really be "cool" to
be one). | just want the straight facts, plainly put.

-- Matthew Huntbach

i

Exotica(?)

2.

Singleton Methods

® Ruby allows adding a method for a single
object

|
I

;class Person
attr accessor :first name, :last name
def initialize(name, lname)
@first name = name
@last_name = lname
end
end

|

p = Person.new(“Anita”, “Ekberg”)

def p.full name
"#{@first name} #{@last name}"
end

p.full name
=> "Anita Ekberg"

Person.new.full name
NoMethodError: undefined method
“full_name'

Singleton class again

® Ruby allows explicit redefinition of the
class for a single object

* For a discussion, see http://onestepback.org/index.cgi/Tech/Ruby/Metaclasses.red

|p = Person.new(“Anita”, “Ekberg”)
I

|class << p
def full name
@first name + " " + @last name
end
end

p.full name
=> "Anita Ekberg"

Person.new.full name
NoMethodError: undefined method ~full name'
for #<Person:0x000001009 ... ">

p.class
=> Person

evall(...)

® Evaluate a string of Ruby code inside a

running Ruby program
o Powerful
o Dangerous

® (Slow)

5eval("2+4")
i=> 6
\eval("def plus_4(arg); arg+4; end")
plus_4(2)

= 6

object.instance eval(...)
module.module _eval(...)
class.class_eval(...)

iclass MyClass; end

[MyClass.instance eval do

| def method

‘ puts "Class method"
end

end

=> nil

MyClass.class_eval do

def method
puts "Instance method"
end
end
=> nil

|lirb(main):106:0> MyClass.method
Class method

o = MyClass.new
=> #<MyClass:0x00000100915c20>

o.method
Instance method
=> nil

lclass DynamicPerson
' def add property(name)
? instance eval %(
| def #{name}
@#{name}
end
def #{name}=(value)
@#{name} = value
end)
end
end

pl = DynamicPerson.new
=> #<DynamicPerson:0x10122e9b0>
p2 = DynamicPerson.new
=> #<DynamicPerson:0x10122al158>

pl.add property :name

=> nil

pl.name= "Matz"

=> "Matz"

p2.name= "Guido"

NoMethodError: undefined method ~name=
#<DynamicPerson:0x10122a158>

for

Iclass DynamicPerson
| def add _property(name)
| DynamicPerson.class_eval $%(
l attr accessor :#{name}
)
end
end

pl = DynamicPerson.new

=> #<DynamicPerson:0x101195170>
pl.add property(:name)

=> nil

pl.name="Matz"

=> "Matz"

p2 = DynamicPerson.new

=> #<DynamicPerson:0x101167d10>
p2.name="Guido"

=> "Guido"

Dynamic Trapping

® When calling a non-existing method,
method missing is invoked

© Allows powerful patterns

® In the dynamic spirit

iclass Person; end
lp = Person.new
@p.name

NoMethodError: undefined method
“name' for #<Person:0xca638>

.class Person

| def method missing(name, *args)

puts "You called #{name} with " +
"args #{args.join(', ')}"

end
end

p = Person.new
p.non_existent method(

a', '2')

You called non_existent method with args a, 2

> class Clever
> def method missing(n, *args)

I> name = n.to_s.gsub(/ |=/, '')
> eval ("@#{name} = *args")

> end

> end

> ¢ = Clever.new

> c.foo = "bar"

> c

=> #<Clever:0xbf9e0 @foo="bar">

Useful?

@@NUMERALS ={'I'=>1,'V'=>5,'X'=>10,'L'=>50,
| 'c'=>100, 'D'=>500, 'M'=>1000}
‘ def method missing(name)
! roman = name.to_s.upcase
if not respond to? roman
d = roman.each char.to _a.inject(0) {|sum, c|
sum+@@NUMERALS[c]}
Roman.class_eval "def #{roman}; #{d}; end"
puts "decoded #{roman}."
end
send(roman) # make the call again with added method
end
end

r = Roman.new
r.IXV

decoded IXV.

=> 16

>> r .DCLXXII
decoded DCLXXII.
=> 672

Freezing Objects

® Ruby objects can be frozen, which
prohibits change

e Cood for safety and debugging

p = Person.new

p.freeze

‘p.first_name = "Harry"

‘TypeError: can't modify frozen Person

p2 = p.clone
p2.frozen?
=> true

p3 = p.dup
p3.frozen?
=> false

Auxillary

ri—quick doc access

® ri Class
® ri Class.method name
® ri Class::NestedClass

® ri method name

| Array#sort
| array.sort -> an_array

array.sort {| a,b | block } -> an_array
Returns a new array created by sorting _self . Comparisons
for the sort will be done using the +<=>+ operator or using
an optional code block. The block implements a comparison
between _a and _b , returning -1, 0, or +1. See also
+Enumerable#sort_by+.
a=1["da", "a", "e", "c", "b"]
a.sort #=> ["a", "b", "c", "d", "e"]
a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]

Documentation

® Ruby comes bundled with RDoc
® (Generate HTML docs from code

® (Cenerate ri docs from code

RubyGems

® RubyGems is a package installation
framework for Ruby libs and apps

@ Remote or local install

o Dependency checking

© Some support for parallel versions

Install latest version locally

)s gem install SomePkg

1# Install latest version remotly

$ gem install -r SomePkg

Install highest version less than
2.3.0 remotely
gem install -r SomePkg -v "< 2.3.0"

AR

Run test suites before installing
and generate RDoc documentation
gem install -r SomePkg -t --rdoc

AR

require_gem

® RubyGems uses its own require command

to load files

®© Requires rubygems.rb is loaded

© Has support for requesting a specific

version of a library

,require 'rubygems’
\require gem 'SomePkg',

>= 2.3.0'
require 'somepkg'

begin

require 'rubygems'

require gem 'SomePkg', '>= 2.3.0'
rescue LoadError

require 'somepkg'
end

What Is Meta Programming?

® A meta program is a program that
E operates on other programs (or itself)

Reflection and ¢ “Meta”

e From Greek, meta = beside, after,
beyond

Meta Programming

: SZ ; © A prefix meaning one level of
description higher

o Used in different areas, e.g., philosophy,
linguistics

Programming Seems Fancy ?
Level

® Not really...

® |n fact, meta programming is often used in:
® Object level
®© compilers
®© Using the language to build applications
® debuggers
® Meta level
© automatic documentation extraction
© Programming “the language”
class-browsers

®

® And sometimes even meta meta programs,
like yacc, ANTLR

What is the Language? Programming
Level, contd

"In class True"

|ifTrue: alternativeBlock Programmlng Language Concept -
“alternativeBlock value meta concepts in the meta meta model, the

| meta language (language description)

"In class False"
ifTrue: alternativeBlock

‘il Language concepts, e.g. class (meta classes)

(1 < a) ifTrue: [...]

Classes (meta objects)

Objects
Meta Classes Infinite Regression
If the class of a class object is C,
e How are classes represented at run- time? and C is an object, then what is the
o Not at all class of C, and what the class of its

class’ class object?
® As objects (class objects))

e What is the class of a class object?
: Predicative or impredicative class

definitions

>> l.class

=> Fixnum

>> l.class.class
=> Class

Stop Whenever Use of Meta Classes

*

T ® Control aspects of classes
_ © Binding

Class is an N

object that //%r\\ © Synchronisation
represents its o ® Instantiation

own class R

© Memory (de)allocation

>> l.class.class == l.class.class.class
=> true
Static / Dynamic Homogeneous / Heterogeneous

® Homogeneous systems: the meta-language
and the object language are the same --
Lisp (eval/macros), Smalltalk, Self,
template Haskell, Ruby

e Static meta-programs are run at compile
time of a system -- Yacc, Lisp/C macros,
C++ template metaprogramming, template

Haskell
® Heterogeneous systems: the meta-

language is different from the object-
language -- Yacc, C macros, C++ template
metaprogramming

® Dynamic meta-programs are run at runtime
of a system and generate code to be run
immediately or inspect/modify the system
code -- Lisp (eval), Smalltalk, Self, Ruby

Two-stage / Multi-stage Terminology

® A two-stage meta programming system
allows only a single meta stage, and a

® Terminology differs between languages
single object stage -- Yacc, Lisp/C

macros, C++ template metaprogramming, © Introspection
template Haskell o Reflection
¢ In a multi-stage meta programming system o Reification
any object program can also be a meta '
program -- Lisp (eval), Smalltalk, Self, © Meta Object Protocol
Ruby
: Reflection
Introspection

® The language is accessible to itself and it
can alter its own semantic

® Discover and modify source code

* Keeping meta-data about program at run- constructions as first-class object

time, making it possible to check e.g.
o Convert a string matching the symbolic

* Available fields and methods name of a class or function into an

e Classes, methods, attributes, types invocation of that class or function
Very important for late (run-time) binding e Evaluate a string as if it were source
code

© Create a new (or give a new meaning or
purpose for a) programming construct

Open Implementation

® Making it possible to add to the
abstract syntax of a program

® Representing programs as data

® Making the compiler accessible at
run-time

Reification

e From Latin res (thing) + facere (to make),
i.e. "to make into a thing"

® Concepts of a meta level represented at
the base level

e Stack, inheritance structure, class
definitions, binding algorithm

irb(main):016:0> def met_a
irb(main):017:1> puts caller
irb(main):018:1> end

=> nil

irb(main):019:0> def met b
irb(main):020:1> met_a
irb(main):021:1> end

=> nil

irb(main):022:0> def met_c
irb(main):023:1> met_b
irb(main):024:1> end

=> nil

irb(main):025:0> met_c
(irb):20:in “met b'
(irb):23:in "met_c'
(irb):25:in “irb binding'
workspace.rb:80:in “eval'
workspace.rb:80:in “evaluate'
context.rb:254:in “evaluate'
irb.rb:159:in “block (2 levels) in eval_ input'
irb.rb:273:in “signal_ status'
irb.rb:156:in “block in eval_input'

Why Reflection?

® Reflection brings flexibility
© Hacking all over your program, or
®© Hacking the interpreter

¢ Adding new concepts without “disruption”

Dangerous? Lisp?

® Meta programming seems to have
originated in Lisp.

Frequently Asked Questions

e “Lisp is a programmable programming
lsn’t reflection dangerous? language.” — John Foderaro

Verall Vel [=i o fil e “In Lisp, you don’t just write your program

down toward the language, you also build
Yes, if you are not careful. the language up toward your program.”

Yes, but you can make it safer. — Paul Graham

Yes, but so is crossing the street. Lisp isn’t the only programmable language.

12i7/98 (C) Brian Foote 1998

Different Languages Meta Programming --
Easy In Ruby

¢ Different languages offer reflection ® Dynamic and reflective

mechanisms of different power ® Everything is open to change
® None: C, C++ ® Blocks allow writing new control structures
o Low: Java, CH# (?) e Most declarations are executable

© High: LISP, Smalltalk, Ruby, Python statements

® Only slightly less malleable than Lisp (no
macros)

Built-In Examples

Declaring object properties:

attr reader :id, :age
attr writer :name
attr accessor :color

® Not syntax, just methods (defined in Module)
® let's go see how theyre written!

e Oh. Theyre written in C.

lclass Module
| def attr reader (*syms)
syms.each do |sym|
class_eval %${def #{sym}
@#{sym}
end}
end
end
end

|class Module
| def attr writer (*syms)
syms.each do |sym|
class_eval %{def #{sym}=(val)
@#{sym}= val
end}

end
end
end

class C
| def pre(arg); puts “pre” ; end
H def post(arg); puts “post” ; end

alias_method :0ld m, :m

def m(arg)
pre(arg)
old m(arg)
post(arg)
end
end

a =[]
|
jclass Array
alias_method :0ld append, :<<
def <<(arg)
\ if arg.kind of? Fixnum
old append(arg)
else
raise "#{arg} not a Fixnum"
end
end
end

a << "Foo"

|./prog.rb:15:in “<<': Foo not a Fixnum (RuntimeError)
from ./prog.rb:23

How To Think About Meta
Programming

® Defining new constructs for your
programming language.

e OK, but .. constructs to do what?

e Whatever your domain-specific language
(DSL) needs to do.

Another Way To Think About
Meta Programming

® A new set of conceptual tools for
eliminating duplication (and other smells)
from your code.

to be continued...

References

® Thomas, D. -- Programming Ruby

e http://onestepback.org/index.cgi/Tech/
Ruby/Metaclasses.red

® http://www.bitwisemag.com/2/What-s-
Wrong-With-Ruby

