
Dynamic Languages — Ready For The Next Challenges, By Design - 达
观.平和

David Ascher, PhD, ActiveState1

July 27, 2004

原文链接

Abstract
Dynamic languages are high-level, dynamically typed open source languages. These languages, designed to
solve the problems that programmers of all abilities face in building and integrating heterogeneous systems,
have proven themselves both despite and thanks to their independence from corporate platform strategies,
relying instead on grassroots development and support. Ideally suited to building loosely coupled systems
that adapt to changing requirements, they form the foundation of myriad programming projects, from the
birth of the web to tomorrow's challenges.

Introduction
There is a category of programming languages which share the properties of being high-level, dynamically
typed and open source. These languages have been referred to in the past by some as "scripting
languages,"2 and by others as "general-purpose programming languages". Neither moniker accurately
represents the true strengths of these languages. We propose the term dynamic languages as a compact term
which evokes both the technical strengths of the languages and the social strengths of their communities of
contributors and users.

While many of the arguments presented in John Ousterhout's landmark paper on scripting are as valid as
when they were written, changes in the information technology landscape and maturation of thinking about
open source lead us to reexamine his argument. This paper will argue that many of the pressures on
software systems, such as the push for standards-compliant open systems and the competitive advantages
granted to customizable systems3 combined with a shift from CPU-bound systems to network-bound
systems, have propelled dynamic languages into a new, critical role. In addition to their traditional role in
support of scripting tasks, these programming languages have demonstrated an unequaled ability to build a
diverse set of important software systems.

We believe this shift in importance warrants replacing the term "scripting language" with one that better
describes the languages' nature and impact, and suggest the use of the term dynamic languages. The choice
of the word "dynamic" over "scripting" is a pragmatic one-the original term has tended to minimize the
broad range of applicability of the languages in question. The new term reflects the belief that the
real-world value of these languages derives more from their dynamics (technical and social) than their
approachability.

In what follows, we present the essential characteristics of dynamic languages as they contrast with other
language categories. Popular dynamic languages are briefly surveyed, followed by an analysis of their
emergent properties in current technical, social, economic, and legal contexts. We suggest software

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

1 of 18 3/23/10 5:18 PM



environments where they are most and least appropriate. After discussing some popular beliefs about these
languages, we explore the future of these languages , touching both on key upcoming challenges, as well as
opportunities for growth.

Language Categories
Among the hundreds of programming languages available, a relatively small number are widely used.
These can be grouped into a few broad categories. The categorization used in this paper is deliberately not
based on strictly technical features of the languages, but instead on a combination of technical, social,
business, and use-in-practice features.

Legacy languages

Legacy languages, such as Cobol, Fortran, and PL/I, are important because no matter how much one would
like to at times, the past can't be wished away, especially in corporate IT systems. Few IT strategies can
effectively accept a "closed world" hypothesis; hence, it is important when considering a new language to
evaluate its ability to be bridged to preexisting systems.

System languages

System languages include C, C++, and, more recently, Java and C#. These languages are characterized by
strong typing (as explained in Ousterhout (1998)), the ability to build tightly-coupled efficient systems, and,
especially for Java and C#, a tight binding between the language and the underlying platforms (the Java
Runtime Environment and .NET Common Language Runtime respectively). One consequence of the tight
integration between the language and the platform is that situations which require breaking the "closed
world" assumption can be problematic.

Proprietary languages

We use the term "proprietary languages" to refer to languages which share many technical features with
dynamic languages, but which are owned, controlled, and evolved by corporations. The prototypical
example is Visual Basic, which is high-level and adaptable for both scripting tasks and building
applications, but whose evolution is driven directly by Microsoft's platform plans. For example, the
evolution of Visual Basic from version 6 to Visual Basic .NET caused considerable frustration among its
users, but makes sense from the Microsoft point of view because Microsoft believes that all of its users
should move to using the .NET framework, something that required deep changes in VB6.

Dynamic languages

Described in detail in the next section, dynamic languages are defined as high-level, dynamically typed, and
open source, developed by a grassroots community rather than a corporation or consortium.

Moderation In All Things
Before we discuss the strengths and weaknesses of dynamic languages, a note about the extent of the claims
being made. The topic of programming language choice often leads to heated arguments where categorical

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

2 of 18 3/23/10 5:18 PM



positions are stated, often in the face of clear evidence that more moderate approaches may be more
rational. A primary argument in this paper is that dynamic languages play an extremely effective and crucial
role as part of an overall pragmatic programming language strategy. Some situations may be best served by
a single-language approach, whether dynamic or not; however, many situations are best addressed with a
combination of system, proprietary and dynamic languages, with connections to legacy systems. There is no
silver bullet in the world of programming languages.

What is a Dynamic Language?
For the purposes of this paper, the term dynamic languages refers to high-level, grassroots, open source
programming languages with dynamic typing, including but not limited to Perl, PHP, Python, Tcl, and
Ruby. We will first cover each of the three definitional criteria (high-level, grassroots open source, and
dynamic typing). We will then briefly introduce each of the currently popular languages. By focusing on the
most popular languages, we'll be able to identify: 1) properties which emerge from combinations of the
properties of the language and the network effect exhibited by all successful open source projects; and 2)
the particular challenges of building contemporary software systems, taking into account market, technical,
and legal issues.

Criterion 1: High-level

The ever-increasing diversity of software systems has pushed programming language evolution along
several dimensions which are generally referred to by a catch-all term: "high-level"4. This evolution is
evident in: 1) a bias toward more abstract built-in data types, from associative arrays to URIs; 2) particular
syntactic choices emphasizing readability, concision and other "soft" aspects of language design; 3) specific
approaches to typing of variables, variously referred to as "loosely typed," "dynamically typed," or "weakly
typed," in clear opposition to "static typing"; 4) automation of routine tasks such as memory management
and exception handling; and finally 5) a tendency to favor interactive interpreter-based systems over
machine-code-generating compiler models. Somewhat tied to each of these trends is the notion that, as
computers become faster and humans have more to do in the same amount of time, newer programming
languages should fit with human constraints rather than with computational ones. Thus, high-level
languages aim to require less from the human programmer, and more from the computer. This leads,
generally, to languages that are easier to use and slower to execute (naturally, there are exceptions to this
generalization).

Criterion 2: Grassroots open source

The term term "open source" is used in at least three ways: The legal usage refers to open source software
licenses which encourage code sharing; the methodological usage refers to a development model
characterized by loose networks of self-organizing pools of volunteer developers; and the sociological
usage refers to the communities which form around specific software projects, characterized by close
relationships between users and developers.

Given the recent adoption of various open source licenses by traditionally proprietary software behemoths,
it's worth noting that all of the successful dynamic languages to date are "old fashioned" open source,
meaning that an individual released an early version of the language to "the net", attracted a following of
users and contributors, and built a community of peers. While the licensing aspects of an open source

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

3 of 18 3/23/10 5:18 PM



project make no distinction between individual and corporate creators, the nature of the original creator
(biological or corporate) has massive impact on the language's adoption and evolution , for legal as well as
psychological reasons. Most likely, contributors to Perl, Python, etc. would have been neither as
enthusiastic to help "pitch in," nor as quickly accepted as contributors, had the language creators been
corporations rather than individuals.

On the other hand, it's also clear that corporations have learned how to run successful open-source projects.
The Eclipse IDE framework, originated at IBM, has been quite successful at gathering input from
organizations, particularly educational institutions.

While each of the successful dynamic languages have chosen different specific licenses, it is far from
accidental that none selected the more extreme GPL license used by the Linux kernel. All of the successful
language communities have deliberately picked licenses that fit equally well with corporate requirements
for non-viral licenses and the Free Software Foundation's goals (although clearly not the tactics, given the
license differences). In general, the language communities view themselves as on the "liberal" side of the
open source debate (inasmuch as any large group can be described as having a consistent opinion), and
aren't compelled to pick sides on the morality of proprietary licenses. This approach has served them well,
with significant successes both within the Linux and Windows communities.

Criterion 3: Dynamically typed

The strongest technical difference between dynamic languages and most of their competitors is that the
typing systems (in layman's terms, the mechanisms by which programming languages refer to the kinds of
objects being manipulated) are more dynamic than static. Being dynamic is an asset if one needs to be able
to change quickly. Thus, being dynamically typed makes sense if the nature of objects being manipulated is
either unknown or unpredictable. This tends to be the case in systems which: 1) are not precisely specified
(the problems addressed aren't yet well understood ); 2) are evolving fast (due to changing standards or
changes of opinion); or 3) need to interact with other systems which change unpredictably (for example,
third party web applications). In addition to dynamic typing, dynamic languages often build in other
dynamic behaviors, such as loading arbitrary code at runtime, runtime code evaluation, and more.

Popular Dynamic Languages
While the preceding three criteria are useful in understanding what we define as a dynamic language, what's
important is not their intrinsic features so much as their extrinsic behaviors in the broader information
technology ecosystem. There, it's important to consider separately those dynamic languages that have
proven to be widely adopted.

Hundreds of programming languages exist, with dozens of new ones developed every year. Our focus is on
the impact, successes, and future of programming languages from a pragmatic, market-reflecting point of
view, rather than a more academic "state of the art" perspective. Therefore, we look at languages that have
achieved a certain degree of popular success, rather than languages that, although technically significant,
have had less influence on the market.

Perl

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

4 of 18 3/23/10 5:18 PM



Perl is often referred to as "the duct tape of the Internet." It arose from the need to extend the capabilities of
Unix command-line tools into a more general-purpose programming system. Perl's strength at processing
text and its accessibility to a broad range of users led to its massive success concurrent with the growth of
the web. Its affinity for processing text files has meant both that it is it used in many such situations, and
that a multitude of popular tools are built in Perl. Thus, it is a language that many IT managers can safely
assume their staff know. In addition to being used for daily sysadmin or "glue" tasks, Perl has been
successfully used in a tremendous variety of larger systems, from enterprise-class mail processing to
world-class websites such as Amazon.com.

Python

Python, of the same generation as Perl, embodies a preference for clean design and clarity over concision.
Akin to a dynamic, less verbose version of Java, Python has found particular affinity with seasoned
programmers who are looking for rapid ways of building flexible systems. As such, Python is often used in
prototyping contexts such as scientific computation and GUI application design, as well as in
high-performance systems. Two notable, recent Python-powered successes include the BitTorrent
peer-to-peer system, with over 1.5 million downloads per month, and the SpamBayes Bayesian anti-spam
classifier, which delivers world-class results using advanced mathematics. In both cases, a key benefit of
Python lies in its ability to "stay out of the way" of the programmers implementing sophisticated
algorithms.

PHP

PHP, unlike Perl and Python which were very broad in scope, focused from its inception on a single task:
building dynamic websites. It's safe to say that it has succeeded, with the latest Netcraft surveys finding
PHP installed on over 16 million domains. PHP combines a syntax that is easy for even novice web
designers to learn, with a rich library of modules that capitalize on the fact that most websites need to do
similar things (talk to databases, cache images, process forms, etc.). PHP is now considered the most
serious competition to the web strategies of both Microsoft (with ASP.NET) and Sun (with J2EE).

Tcl

Tcl (short for Tool Command Language), designed with application integration in mind, has found
applicability across a wide variety of platforms and application domains. It has been particularly successful
at GUI applications (through its Tk toolkit), automation in general, and test automation in particular. Its
small code size has led to it being deployed in a variety of embedded contexts; for example, Tcl is part of
Cisco's IOS router operating system, and as such is included in all high-end Cisco routers and switches. A
different, but equally important, example of Tcl usage is AOLserver, America Online's web server-yet
another example where a scripting language runs some of the largest and busiest production environments
in the world.

JavaScript/JScript/ECMAScript

The language that is technically referred to as ECMAScript, but more commonly known by the name of its
Netscape-authored implementation, JavaScript, deserves special mention at this point. It certainly qualifies
as a dynamically-typed language, is quite high-level, and has at least two open source implementations.

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

5 of 18 3/23/10 5:18 PM



Exceedingly popular, it is supported by all major web browsers, and, as a result, is part of a huge number of
websites. Significant applications have been built using it, especially on the client-side of the web
transaction, such as webmail interfaces and blogging tools. It is worth noting, however, that JavaScript is
unlike the languages previously mentioned in two significant respects. First, because it was defined as the
language of the browser, it had to combine strict security requirements (e.g. a JavaScript program can't, as a
rule, access files on disk) with odd user interface challenges. For example, it is "better" for a JavaScript
program to fail quietly in the case of a programming error, and this behavior can make it a significant
challenge to build large systems in JavaScript. Furthermore, and more critically, JavaScript has suffered
from too much corporate interest. The design of the language was one of the battlefields between Microsoft
and Netscape, and it can be argued that the resulting language is a casualty of war. Even with open-source
implementations, the language did not evolve according to normal open source mechanisms; instead,
evolution was governed by the politics of the ECMA standards process, under considerable pressures from
both major browser vendors. As a result, JavaScript is effectively unchanging (a polite word for 'dead'), and
web designers are pondering moves to other technologies such as Macromedia's Flash, Microsoft's
proposed XAML, or Mozilla's XUL frameworks.

Ruby, Groovy, Prothon, others

The languages described above are simply the most popular today. Depending on when you read this, their
relative popularity may have shifted due to evolution of the languages, the market requirements,
fashion-like "buzz", importance of various platforms, etc. New languages are also sure to emerge. Some
notable "up-and-coming" languages include Ruby, which provides a blend of Perl and Python-inspired
features; Prothon, which aims to be a "better" version of Python; and Groovy, still under specification,
which aims to be the standard dynamic language on top of the Java platform. It's much too early to tell
whether any or all of these languages will achieve the success of Perl. What's reassuring is that, because of
the market dynamics at play, the winners will win because they are better at doing something that many
people value.

Properties of Dynamic Languages
More important than the differences among the languages noted above are their commonalities.

Technical purity

Dynamic languages were designed to solve the technical problems faced by their inventors, not to address
specific goals identified as part of a 'strategic plan' to influence buyers of IT solutions. As such, they have a
"pure" focus on solving technical problems, with no agenda to push a particular platform, operating system,
security model, or other piece of the IT stack (this focus is true of most successful grassroots open source
projects). The value of technical purity is most notable in comparison to competing proprietary languages
where it is clearly not exhibited, viz. Visual Basic's recent changes. Note that technical purity should not be
confused with a more academic notion of purity. The successful dynamic languages all embrace the
pragmatic constraints of the real-world, such as integration with 'foreign' systems and backwards-
compatibility, even though those constraints often make the technical details much "messier." The crux is
that they are pure in intent, in that they do not serve a non-technical agenda.

Optimizing person-time, not computer-time

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

6 of 18 3/23/10 5:18 PM



The driving forces for the creation of each major dynamic language centered on making tasks easier for
people, with raw computer performance a secondary concern. As the language implementations have
matured, they have enabled programmers to build very efficient software, but that was never their primary
focus. Getting the job done fast is typically prioritized above getting the job done so that it runs faster. This
approach makes sense when one considers that many programs are run only periodically, and take
effectively no time to execute, but can take days, weeks, or months to write. When considering networked
applications, where network latency or database accesses tend to be the bottlenecks, the folly of hyper-
optimizing the execution time of the wrong parts of the program is even clearer. A notable consequence of
this difference in priority is seen in the different types of competition among languages. While system
languages compete like CPU manufacturers on performance measured by numeric benchmarks such as
LINPACK, dynamic languages compete, less formally, on productivity arguments and, through an indirect
measure of productivity, on how "fun" a language is. It is apparently widely believed that fun languages
correspond to more productive programmers-a hypothesis that would be interesting to test.

Open source, deeply

All of the successful dynamic languages have, according to our definition, a primary implementation which
is open source. This simple fact has in practice meant that the open source implementations have been the
de facto language definition. An important consequence of the open source nature of the primary
implementation has been that modifications to the language by third parties have been easier to adopt into
the mainstream code base than if any kind of contractual relationship had been necessary. Any engineer
anywhere can "tweak" the language to his or her heart's content, without having to ask anyone for
permission. This ease with which experiments can be performed by anyone is without equal. Maintaining
any significant modifications in the face of a language under constant change is a maintenance burden, and
it is widely understood that it's best to contribute modifications back to the main code base. The resulting
phenomenon of naturally aggregating improvements from "anybody" is (relatively) unencumbered by
bureaucracy, either of the nondisclosure-agreement-signing kind or of the standards-body kind. While a
challenge for organizations that require the use of standards-based technologies, this has allowed the
languages to evolve quickly, and to incorporate feedback from stakeholders of all sizes5. It is worth noting
that academics (university students in particular) have been able to convert ideas into implementations with
remarkable efficiency through open source, a process that tends to be quicker than either academic
publication or the traditional industrial model of getting the idea reified in a product.

One of the ways in which dynamic languages are deeply open source is the almost total transparency about
how the languages are evolved. The bug lists and patch review processes are public, and most conversations
about the evolution of the language occur on public mailing lists, subject to the scrutiny of all. There is no
hiding behind firewalls or membership in an organization.

Evolution by meritocracy and natural selection

Dynamic languages evolve along two, often orthogonal, directions. The core of the language is often
controlled by a tight-knit, extremely competent set of individuals who are in charge of the language's basic
tenets. These teams are meritocratic rather than democratic, and consider user-suggested changes only
inasmuch as they don't present a deviation from the aesthetic or philosophical principles of the language
design. It is through this rather autocratic process that the languages have managed to remain "true to their

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

7 of 18 3/23/10 5:18 PM



core" over 10+ years of evolution. In contrast, the capabilities of the languages (rather than their style) has
most effectively grown through extensions, libraries, and modules. In that area, individual contributions are
equally valued, and frenetic market competition rewards authors of important and useful modules, giving
massive feedback to all contributors. Programming languages are unique among open source projects in
that the gap between users and authors is minute; users can give valuable design feedback because, just like
the library creators, they write software and understand the perspective of the software designer.

It is through that bazaar of module distribution that practical usefulness emerges, because for a dynamic
language to support a new technology, the language itself rarely needs to change; all that's needed is
someone to write a special-purpose module. Thus, as soon as a library, file format, or Internet protocol
becomes "useful enough," the language communities build language-specific modules to support it. It is the
ability of open source communities to distribute the workload to those who first feel the need to scratch a
particular itch, that makes them able to compete effectively against multi-million dollar efforts. It is worth
noting that dynamic typing is an important edge in the race to "embrace and extend" new technologies; for
example, if a web application changes the schema of the data being transmitted, clients written in a
dynamically typed language will require fewer changes than their statically typed counterparts, all other
things being equal.

Platform neutrality

Dynamic languages have naturally been platform-neutral. Building a programming language that is limited
to a particular platform is anathema to language designers; the language designer tends to believe that
"everyone" would be better off by using their language, or if not everyone, then at least everyone trying to
solve a particular kind of problem with a particular background. These goals tend to define target audiences
which span all platforms (e.g. the programming challenges of web designers should be mostly independent
of the underlying platform). While all of the popular dynamic languages were born with individual platform
"biases," they also embrace the notion that they should work as well as possible on all platforms. Over time,
each language evolves to fit an ever-increasing set of target operating systems, naturally covering Linux and
other Unix variants, and various Windows platforms, but also reaching into more esoteric platforms like
mainframes, supercomputers, phones, and various embedded devices. Operating systems and platforms,
more generally, are seen as "just another context to operate in." Whether or not each use case is supported is
simply a matter of perceived need and volunteer time.

This approach has both negative and positive consequences. Dynamic languages cannot fit frameworks
such as .NET or the JVM as well as languages explicitly designed to fit them. On the other hand, dynamic
language communities are free from the need to restrict themselves to specific platforms definitions, and
have tended to embrace a wider variety of platforms. It's important to note that platform neutrality doesn't
mean "cross-platform at any cost", where a feature must be available on all platforms before it is available
on any. Instead, platform-specific language extensions (typically through libraries or modules) are
developed by users who have needs for particular platform support. It is thus possible to write cross-
platform programs using dynamic languages (most are), and it is equally possible to write programs which
fully exploit platform-specific features.

Languages you can build a plan on because users determine the language plan

Since the effort required for maintenance of the language is borne by the users of the language, the decision

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

8 of 18 3/23/10 5:18 PM



to end support for a platform is closely tied to the disappearance of users of that language on that platform.
Business drivers which accelerate unnecessary changes, such as the idea of forcing customer upgrades
because of a requirement for revenue, don't exist for technologies such as dynamic languages which are
volunteer-driven and free. Importantly, corporate users of dynamic languages who have investments in
particular ports find it relatively cheap to maintain these ports either directly or through funding vehicles
such as specialized vendors.

When to use Dynamic Languages
We've mentioned some successful deployments of dynamic languages and some of their observable
properties. We've stated that system languages are also important pieces of the IT puzzle. When should one
consider using a dynamic language ? There are, naturally, no simple answers that cover every possible
scenario. In particular, any policy that prescribes a particular language is incompatible with a value-based
approach to language choice. If we assume an environment in which language choice is possible, however,
some areas have shown to be ideal for the use of dynamic languages.

Scripting tasks

Scripting is certainly an arena where dynamic languages are without equal. Whether the specific task
involves simple text processing, database exploration, or gluing together existing tools, scripting languages
have the right blend of ease-of-use, rapid development support, and rich interfaces to support these
scenarios.

Prototyping

A different use is the construction of complex systems, especially if the requirements aren't well-specified
ahead of time. The domain can vary considerably, from process automation to scientific research to GUI
development. If the programmer isn't sure at the onset of the project how the final application will look or
act, then the rapid development capability of dynamic languages leads to higher productivity and better
end-point quality. If it's "cheap and easy" to correct a mistake, you correct it more often, leading to shorter
projects or better software (or both). Furthermore, experienced users of dynamic languages tend to take on
more ambitious projects, because the cost of failure is lower. The rapid edit-compile-run-test cycle
exhibited by dynamic languages has made them favorites of agile development methods, which favor
iterative approaches over top-down models.

Ideally suited for loose coupling

As argued by many observers6, always-on networks, mobile devices and open networking protocols allow
for a radically new way of building software systems, focused less on the PC and more on the power of
coordinating and aggregating network resources, e.g. through the use of web services7. In this new model,
deeply integrated platforms are not as valuable as components (using the broadest definition) accessible
through open interfaces.

Steering computational tasks

The scientific computing area, known for its obsessive pursuit of optimization, outrageous supercomputing

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

9 of 18 3/23/10 5:18 PM



facilities and need for always-increasing computing power, may seem odd to associate with dynamic
languages. Indeed, most serious scientific computations are done using system or legacy languages that
have benefited from decades of optimization work. However, those optimizations are typically restricted to
specific computations (linear algebra, numeric optimization, etc.). In many cases, the "scientific" part of
scientific computation involves a great deal of what other disciplines would call prototyping-trying out an
idea to "see if it works." This experimentation needs to be done by computer scientists in collaboration with
non-computational scientists, the specialists in physics, biology, chemistry, climatology, or other disciplines
who drive the science behind the computations. Given this environment, it is not surprising to learn that
dynamic languages are routinely used as part of a holistic approach to scientific computation, in which
computational scientists build flexible systems that are then easily scripted by domain experts.

Business logic

The distinction between variable, high-level domain-specific choices and optimized, constant building
blocks occurs in every application domain. For example, in many corporate applications a distinction is
made between "business logic" (e.g. what data should be collected from the user, what kinds of reports
should be generated), and the "back-end code," (e.g. database or network calls, communication with other
subsystems). In this regard, dynamic languages share the same benefits as languages such as Visual Basic:
rapid development, easily learned by occasional programmers, well suited for end-user scriptability, and
forgiving to programming errors.

Advanced technologies

Because of the language design aspects that strive to minimize the human effort required to express
computational ideas in code, dynamic languages are deeply appreciated by people writing complex or
sophisticated systems, be they nuclear scientists, network engineers, or web architects. System languages
tend to require more discipline of the "bookkeeping" variety than do dynamic languages, be that through
requirements for explicit type annotation, explicit memory management, interface definitions prior to
implementation, etc. While useful in systems that require specific guarantees of robustness, the scaffolding
needed by those language approaches can get in the way of seeing the sculpture as a whole.

A widely-held (but hard to test) belief is that the rate of coding errors per line of code is roughly
independent of programming language, regardless of the level of the language8. Casual inspection of
high-level language code contrasted with equivalent systems code will show that dynamic languages are
more concise. A given task requires fewer lines of code to execute in a high-level language than in a
lower-level language,9 and thus should have fewer errors. In addition, this suggests that high-level
languages make it easier for a programmer to keep a larger part of their program in working memory. Given
this, the success of dynamic languages in the scientific and engineering communities at large is not
surprising; those kinds of users need to focus on the complexities of the business logic, and worrying about
the details of the optimized memory pools is detrimental to getting the important work done.

When Not to Use Dynamic Languages
Only the most zealous advocates of dynamic languages will recommend their use in all situations. There are
software contexts that seem plainly inappropriate for their use.

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

10 of 18 3/23/10 5:18 PM



Some high-performance tasks

While we've argued that dynamic languages can be used to build high performance systems, even those
applications rely on code written in more static languages to do key parts of the work. Several kinds of
tasks, such as some numeric computations, machine code generation, or low-level hardware interfacing, are
best done in programming languages where the concepts being manipulated (be they numbers, bytes, pixels,
or memory addresses) are expressed in a language optimized for them. In most of these cases, there is no
ambiguity about the requirements-a mathematical routine should do the same operation as it did when it
was first invented-or the types of objects manipulated. It makes sense to use a language like Fortran or C++
(which benefit from decades of optimization research) to implement it. There is a diverse set of such tasks
where performance is the overwhelming concern, and where dynamic languages would result in
unacceptable results. In many cases, combining a "steering layer" written in a dynamic language and
optimized components written in other languages can lead to a system with the flexibility of a dynamic
language approach and the effective performance of a low-level language.

Small memory systems

Dynamic languages, because they are high-level and interpreted, require more machinery to execute than
either lower-level languages or languages that get compiled to machine code or equivalent. Thus, generally
speaking, they are inappropriate choices for very small memory systems. It is interesting to consider,
however, that what were once considered very small memory systems, such as phones and TV set-top
boxes, are now laden with enough memory to run much larger applications.

Myths about dynamic languages
Given that much of what is said above is "old news," one must wonder why dynamic languages haven't
garnered more visibility among the mainstream, especially in the media and corporate boardrooms. In
addition to the commercial forces at play (some of the competing languages are actively promoted by
marketing organizations with advertising budgets and PR firms), and acknowledging that the technical
communities at the core of these open source languages tend to do a poor job of presenting their ideas to
non-technical audiences, it must be noted that part of the problem has been a lack of challenge to persistent
myths or misconceptions surrounding dynamic languages. We examine some of these critically.

Myth: "You can't build real applications with scripting languages"

While Ousterhout (1998) should be credited for widely publicizing the strengths and value of languages
such as Perl, Tcl, Python etc., some believe that by adopting the moniker "scripting language," he
unwittingly facilitated the propagation of one of the biggest criticisms of these languages-that they are only
useful for small, simple, automation tasks, and shouldn't be considered for the serious programming
challenges that professional programmers routinely face. While rigorous objective analyses on the topic are
hard to find, there is an abundance of anecdotal evidence suggesting that professional programmers can,
and have, built world-class systems using these languages.

The world-wide web, arguably the most successful IT project of the last decade, is substantially based on
dynamic languages. At every stage of the web's growth, from homegrown "home pages" (which were most
often powered by Perl) to today's mission-critical websites (a large percentage of which are written in PHP

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

11 of 18 3/23/10 5:18 PM



and Perl), dynamic languages have been critical components of identifying new challenges, prototyping
architectures, and building scalable, robust systems. It could be claimed that, without high-level languages,
a project with the combined risk and size of Yahoo! would never have been started, let alone completed.
Web applications of all kinds, such as the Mailman list management software, the Bugzilla bug tracking
system, the Typepad/Moveable Type blogging system, or the Gallery photo archival system, are all powered
by dynamic languages. Google uses Python in a variety of systems. The social software site Friendster.com
recently shifted from a JSP architecture to one based on PHP, specifically to address performance problems.

Myth: "Dynamic languages are brittle"

Dynamic typing has in practice meant that the compiler is unable to make strong statements about the types
of objects at compile time10. This does mean that exceptional conditions may occur at runtime. Instead of
looking on this as a critical weakness of dynamic languages, it can be argued that this has led to systems
which are more robust to runtime failures than statically-typed counterparts. Because runtime failures
happen more often, defensive mechanisms have been built to deal with them, and the overall system is more
stable. As a result, applications written in dynamic languages tend to fail more gracefully than those written
in lower-level languages. For example, writing code that robustly deals with possible network outages is
orders of magnitude easier with a dynamic language than with a language such as C. This ability to
effectively deal with exceptional situations will only become more important as systems become more
interconnected.

Myth: "You can't build large systems with dynamic languages"

The above sentence is usually followed by an argument as to why tight coupling, strong typing, and strict
interface checking are key to building large systems. Smalltalk experts, who have been building large
systems for decades, probably chuckle at that argument more than any others. Building large systems does
present different challenges than building smaller systems. The importance of infrastructure components
such as error handling, logging, and performance monitoring are key, as are design-time concerns such as
architectural soundness and scalability planning, and development-time issues such as multi-tiered testing
strategies, iterative development, proper planning and documentation, and so on. These challenges are
orthogonal to the language choice, and certainly quite large systems have been built with dynamic
languages.

Myth: "There's no innovation in open source"

This myth has received airtime recently with executives from some proprietary software vendors accusing
the open source community of producing clones rather than building innovative software. We'll leave it to
others to defend the work done in the domains of operating systems or productivity applications. The
argument that open source produces no innovative work certainly doesn't hold much water when it comes to
programming languages. Not only have programming languages typically come out of academic research
efforts (which are effectively open source), but open source language designers have continued to innovate,
even though that innovation has occured through different mechanisms than those of proprietary languages.

Unlike languages such as Java and C#, which are the focus of serious, goal-directed, funded research
efforts, dynamic languages evolve in a more spontaneous (but not necessarily worse) way. Academics
worldwide find it easy to get the implementations, understand them (with direct help from the maintainers),

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

12 of 18 3/23/10 5:18 PM



experiment with changes, and argue for language changes. Much academic language research therefore
looks at the dynamic languages as a fertile ground on which to develop next generation approaches.

In general, the spirit of cooperation that pervades open source makes for rapid experiments and rapid
implementations. Examples include the Stackless implementation of Python, which is proving to be
exceptionally useful in some high-performance contexts; Tcl's virtual filesystem, which is still unique in the
flexibility it offers developers looking to distribute their applications effortlessly; and the Perl 6 effort,
which is the focus for considerable design and engineering work toward building a fast register-based
virtual machine with unparalleled flexibility. Perl is an interesting project to contrast with proprietary
languages. Technically speaking, the shift from Perl 5 to Perl 6 is probably as significant as the shift from
Visual Basic 6 to Visual Basic .NET. Indeed, the architects of Perl 6 don't expect it to be backwards-
compatible with Perl 5 (just like VB.NET isn't backwards-compatible with VB6). However, unlike VB,
there is every reason to believe that the Perl 5 language will continue to be developed, supported,
documented, and used for years. The investment in Perl 5 by the community will ensure its long-term
health, as no one has a strong commercial interest in "forcing upgrades."

Myth: Dynamic languages aren't well supported

This myth has been fading in recent years as the benefits of open source support systems have become more
well known, thanks to the success of Linux. The dynamic language communities have organized a variety
of support mechanisms, from professional trainers to peer-support online discussion groups to vendors
offering enterprise support contracts, to contractors able to modify the languages to fit particular customer
needs, and, in some cases, shepherd the changes back into the core language distribution.

A related point is the availability of books and other teaching or reference resources. Book publishers
compete fiercely for shelf-space to cover dynamic languages. It is rare not to see books on dynamic
languages among the top-sellers in the Programming category on sites like Amazon.com.

Myth: "Dynamic languages don't have good tools"

This myth deserves two answers. The first is that there are tools for dynamic languages, but the providers of
these tools are either not commercial vendors (open source projects tend to spawn complementary open
source projects) or they are not the same tool vendors that target proprietary or systems languages.
ActiveState (the author's employer) has been vigorously competing in the dynamic languages tools market
for seven years, along with many others. The tools can be found if you look for them, and some equal or
exceed the quality and features of large commercial vendor tools. The second answer is that the tools for
dynamic languages aren't the same as the tools for systems languages. If you define a tool as a piece of
software that helps you build a system better or faster, then the diversity of software available on the
Internet targeted at dynamic language programmers is awe-inspiring (browse through
http://search.cpan.org/ search.cpan.org for a Perl-centric example). Because of the positive feedback cycle
evident among dynamic language programmers, there are thousands of libraries, modules, packages, and
frameworks available for use, most under open source licenses. When the open source community doesn't
provide the answer to a commonly felt pain among dynamic language programmers, companies such as
ActiveState, NuSphere, Wing, Zend, and others jump in with commercial offerings.

Myth: Dynamic languages don't fit with .NET, Java, System X

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

13 of 18 3/23/10 5:18 PM



Interoperability is a natural consequence of the decentralized development model of dynamic languages.
All of the major languages have interfaces to well-established frameworks, be they COM, CORBA, etc.
More recent platforms haven't been ignored either; there are successful ports of the dynamic languages to
Java (Jacl and Jython in particular) and interesting projects and products targeting the .NET platform
(IronPython, PerlNET). History seems to argue that as soon as a real and well-defined need is articulated,
it's simply a matter of time before the right talent emerges from the volunteer community (usually without
forewarning) to lead the effort to meet that need.

What about Java?
Java, especially when seen as "organized opposition to Microsoft," is interesting to contrast with the
dynamic languages, since a superficial look at the language could lead one to group them together. There
are technical and non-technical reasons why Java isn't considered a dynamic language.

Statically typed and security focused

Foremost, Java is statically typed. A Java programmer needs to specify the type of each variable, as well as
the particular interfaces each class implements; any deviation from these declarations causes (intended!)
syntax errors or compilation failures. The choice of static typing in Java wasn't done for arbitrary reasons,
naturally-it was done because it is far easier to optimize programs for which type information is know and
guaranteed by the system. Additionally, it is far easier to make security guarantees about statically-typed
languages, and one will recall that the need for "verifiable" code is at the foundation of both the Java Virtual
Machine architecture and the .NET Common Language Runtime. It is possible to implement dynamically
typed languages on top of such systems (Jython is a Python implementation for Java, and Groovy is a new
dynamically-typed language for Java), but Java-the-language is far from that.

Not as loose

Java's design makes it easy to build highly integrated Java applications, and harder to build interfaces
between Java systems and non-Java systems. This is somewhat related to a feeling that there is a "Java
way" of doing any given task. Contrasting that with the dynamic language model where there are multiple
ways to do any one thing, one understands why the Java approach is simpler to manage and also possibly
blinkered-changing the officially supported way of doing any one thing becomes a significant effort-in the
dynamic languages world, for better of worse, it happens (or doesn't!) as part of a brutal natural selection
process.

There are more subjective difference between the dynamics of the Java community and those of the
dynamic language communities. Dynamic language communities are looser than the Java community. This
is true at many levels-the definition of "community member" is fuzzier in the dynamic language world.
There is no equivalent to the formalized Java Community Process (JCP), which, while designed to be
inclusive, effectively raises the bar compared to the informal models used by the grassroots open source
communities11. While the JCP is more broadly accepting of organizations than some other standards-
defining bodies, it still requires a financial commitment from companies, effectively filtering out many
possible contributors. This may be by design (e.g. to ensure "committed" contributors). Regardless, it does
narrow the scope of the self-defined community.

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

14 of 18 3/23/10 5:18 PM



Challenges for Dynamic Languages
As discussed earlier, dynamic languages are not appropriate in all contexts and their future success is not
necessarily guaranteed. It is worth asking whether the organizational behaviors that have spawned them are
appropriate for long-term success, both individually and as a category.

Lack of strategic vision

To date, dynamic languages have not been driven by strategic plans. In fact, most successful open source
projects (Mono and Gnome being notable exceptions) have enjoyed success in spite of a lack of a long-term
plan, let alone a clearly defined vision. The pragmatic, tactical approach to fix what's broken today as
opposed to anticipate the problems of tomorrow, has, when combined with the selection processes inherent
in the open source ecosystem, led to a survival of the fittest for today's problems, rather than rewarding
those with the most compelling vision for future success. It's worth asking if the lack of a plan is guaranteed
to be a winning approach in the long term.

A good example to highlight here is the different approaches toward newer standards such as SOAP, evident
in dynamic languages vs. Java and C#, for example. The dynamic language communities are generally
content with letting "someone else" worry about the standards-definition process, and are confident that
they'll be able to support them when they are defined and stable. In contrast, Microsoft and Sun have
committed significant resources to defining the standard, for clearly competitive, non-altruistic reasons. It is
reasonable to expect that the resulting standards have been more influenced by how well they fit with those
languages than with languages that got involved late in the standard-definition process. In this case, the
combination of strategic planning and the resources of large corporations clearly resulted in shifts in the
standard toward more strongly-typed languages. An interesting counter-spin is that dynamic language
enthusiasts tend to prefer a different approach to web services over SOAP (namely REpresentational State
Transfer, known as REST), which (they claim) is simpler, more pragmatic, portable, robust, and less
resource-intensive.

No real/formal budget

Given the importance of programming languages in shaping IT, and the effective success of dynamic
languages, it is stunning to realize that these languages have effectively succeeded with no budget.
Certainly real value is invested, through sponsored work by individual companies, to some degree through
the various organizations that support the languages, and predominantly through the volunteer labor that
goes in on a daily basis. The fact remains, however, that there is no budget either for significant marketing
activities, or, more problematically, to engage in long-term technical projects.

If one guesses the budget supporting either the language-related aspects of the .NET framework project at
Microsoft or the Java-related projects at Sun and IBM, and compares it with the "sweat and tears" budget of
developer groups in the dynamic language communities, it's hard to bet on the "little guy." However, even
greater inequalities have existed in the operating system or database sectors, where the open source
alternatives have made tremendous strides, showing that traditional budgeting and investment models
should not be applied blindly to open source efforts.

One important advantage that open source can bring to bear in such competitive battles is that its costs of

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

15 of 18 3/23/10 5:18 PM



failure and limits on success are negligible. If an effort to re-engineer the Python virtual machine fails, all
that's lost is volunteer time. This makes it possible to entertain doing several such experiments
simultaneously, and pick the winner. Similarly, there are no limits on success-there is no "cost of sales" to
worry about with open source success stories, nor are there support costs. The dynamics of open source
success tend to scale the pool of talented contributors and the support bandwidth along with the success.
Still, ask any dynamic language lead if he could use two man-years of dedicated work on the language and
the answer will always be yes.

Lack of a marketing department

Budgetary constraints aside, it is worth noting that the market influence that dynamic languages have had is
the accomplishment of a wide pool of people with quite narrow technical skills. While a few programmers
can also turn a good phrase or design a nice logo, it's fair to say that there is no marketing department with
the coordination, plan-based activities, and, again, budget with which to influence decision makers. Clearly
the reward mechanisms which have led to a growing pool of technical talent in each language community
have not led to a sizable pool of marketing talent. Technologists are their own worst enemies in cases such
as these-they believe that the better technologies will "win", in the face of centuries of data showing that
sometimes it's the technology with the better ads that wins. While dynamic languages will undoubtedly
survive without marketing, it is interesting to contemplate how different the software world would be in the
absence of marketing (or, failing that, with less asymmetric promotion).

Legal stability / Patent threats

One of the most vague but real threats to open source in general is the unequal position of open source
communities in the face of legally savvy corporate opposition. Specifically, the risk of patent and other
intellectual property attacks against open source projects is worth considering seriously. The current state of
software patents (especially in the United States) makes it disproportionately easy for larger corporations to
claim (and receive) software patents for inventions that can be independently developed by open source
developers. Volunteer developers, as a rule, have no direct economic interest in developing the software,
hence no interest in acquiring such patents (even if the cost weren't prohibitive for most individuals). It is
possible for patent-holding corporations to bring suits against commercial distributors of dynamic
languages, commercial users of dynamic languages and, least likely but most threatening, against the
individual contributors to those languages. The asymmetry evident in the relative legal arsenals on both
sides of that divide is worrisome12.

Forecast
The history of dynamic languages is a source of inspiration for the future of dynamic languages. A look at
the last 15 years and the impact of dynamic languages on other languages suggests a few trends.

Embracing new development methodologies

Dynamic languages tend to be adopted by programmers who are resistant to "following the pack"
(especially if they detect a marketing-driven impetus behind the pack motion). It is therefore not surprising
to note that there is significant overlap between dynamic language enthusiasts and proponents of novel
development methodologies: many of the Agile methods are routinely adopted and defined by people

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

16 of 18 3/23/10 5:18 PM



working in languages such as Smalltalk, Ruby, Perl, Python (and, it must be said, Java). Many of the
artifacts and scaffolding systems required by methodologies such as Extreme Programming are often
written in a dynamic language, even if the main code base is not. This makes sense: it's an excellent
application domain for these languages, where performance matters less than ease or speed of development
and maintenance.

Life on the edge

Dynamic languages were created to address computing needs that mainstream languages ignored or couldn't
address effectively due to their design limitations. Thus the need to process text to respond to networking
requests (as in the CGI protocol, the foundation of the dynamic web) led to the success of languages such as
Perl. The increase in the capabilities of routers and switches has provided fertile ground for Tcl in the 21st
century. The explosion of database-backed websites developed and maintained by non-engineers led to the
sustained explosion of PHP use worldwide. The latest twist on the web, blogging, is powered at least as
much by dynamic languages as by more traditional languages. The need for rapid development on more
powerful mobile platforms is an interesting avenue of growth for Python. In each of these cases,
adventurous people exploring new technologies have used the strengths of dynamic languages to let them
build systems that, in later generations, become more well-specified, and hence more appropriate for
reimplementation in system languages. The dynamic languages' affinity for loosely-defined, rapidly
changing requirements is evident in their past, and one can expect it to be advantageous in the future. To put
it simply, the ease with which people can "hack something up" with dynamic languages makes them ideal
for the frontier, wherever it is at any given time.

New languages

It is equally clear from studying the past that no specific language has a good reason to expect to be the
dominant language in the future. Even within the dynamic language category, popularity has shifted from
one to the other as a function of time, language evolution, and primarily, different use cases. The lack of a
commercial outlook means that dynamic languages do fairly little to actively bind their users to long-term
commitments-a consequence of which is that users of a dynamic language routinely learn new languages,
and, over the course of a career, build expertise in several languages.

New features

Programming languages evolve under various pressures: bug fixing, the wishes of users (which often are
simply asking for "feature matching" from other languages), and the more intellectual pressures of language
designers, who look for new architectures, or new syntactic or semantic approaches, to increase either the
breadth of the language (i.e. support new machine architectures) or its suitability for particular tasks. There
are opposing pressures, as noted above, such as requirements for backwards compatibility, which grow in
importance with mainstream adoption (mainstream users tend to be much more conservative than early
adopters). Each of the major dynamic languages has undergone massive revisions in the last decade, leading
to much more full-featured languages, while growing the user base consistently.

New economic and legal model

As has been argued elsewhere 13, the existence of open source implementations of a technology encourages

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

17 of 18 3/23/10 5:18 PM



— http://lab.arc90.com/experiments/readability

Follow us on Twitter »

the commodification of that technology. While this phenomenon has been widely noted in the operating
systems, web server, and database markets, few analysts have noted that there have been no serious efforts
at defining new strictly proprietary languages-Java is following a modified open source model (the Java
Community Process), and even Microsoft has placed C# under the auspices of an international standards
body (ECMA). The languages themselves are not seen as revenue sources-the revenue models lie in the
technologies that the languages rely on.

Just as the commercial vendors have changed their distribution model and seem to have moved toward the
open source model, open source communities have been educated on the legal issues around software
distribution, from patents and the need to establish clear intellectual property ownership, to the legal risks to
which the various actors (contributors, distributors, users) are exposed. Evidence of this maturation is the
formation of non-profit umbrella organizations with legal guardianship over the languages, revised license
agreements, and more formalized paperwork surrounding contributions from third parties. For example,
both the Perl and Python communities actively built non-profit foundations (similar to the Apache
Foundation) with appropriate legal status, advisors, and sufficient enough assets that they are both
launching targeted funding programs. The budgets involved are still relatively small, but the significance of
the accomplishments should not be diminished.

Conclusion
The process by which programming languages are chosen is an interesting one. Individuals tend to follow
the advice of peers, as well as being influenced by what they perceive as trends, whether it's for status or for
employability. However, these choices are easily reconsidered upon trying a language-working with a
language that is a poor fit is typically painful enough to convince people to revisit their original choice. This
dynamic is at the heart of the popular success of dynamic languages-sooner or later, programmers find one
or more such language that they like, or, put differently, that they are able to use productively.

Unlike individuals, organizations choose languages following a very different process, where trends are
probably even more important, but the process of "correcting" earlier choices is much rarer, because the
choice of language is often made by non-programmers. From the perspective of high-level managers, which
programming language should be used within an organization is typically seen as a "low-level"
consequence of a more important decision on a "platform strategy" or "technology strategy." That
high-stakes decision is the focus of tremendous battles among giants such as Microsoft (which argues for its
.NET/Longhorn strategy), Sun Microsystems (which promotes a Java-centric strategy), and a variety of
other players now arguing for Linux and a more heterogeneous technology stack. These policy choices tend
to limit the programming languages available to the programmers who will actually implement the
software, and, unfortunately, by nature of being strategic and the result of long-term forecasting, these
policies often ignore the

Dynamic Languages — ready for the next challenges, by desi... http://dustin.javaeye.com/blog/49338#

18 of 18 3/23/10 5:18 PM


