
A Personal History of CMC

Jacob Palme
Dpt. of Computer and Systems Science

Stockholm University and KTH Technical University
Electrum 230
164 40 Kista

jpalme@dsv.su.se
SWEDEN

ABSTRACT
Based on more than 30 years of experience in using and
designing computer systems, this paper summarizes a
somewhat controversial view on how software should be
designed to be liked by its users. Basic to this view is that it
is dangerous to use computers to ensure adherence to rules,
laws and regulations. When rules are interpreted by
humans, the humans are capable of interpreting the rules
with discretion and understand that quite often, the rule
should not be adhered to 100 % in every case. Computers
are not so good at making such judgements.

Keywords
CMC, Computer Mediated Communication, HMI, Human-
Machine-Interaction, User influence in software design,
Personal privacy, Power, Control, Influence.

INTRODUCTION
Some people feel threatened by computer. Other people
experience computers as enhancing their opportunities. I
have been using computers since 1963 and been working in
the area of CMC (Computer Meidated Communication)
since 1975. This paper tries to summarize my experiences
and the explanatory system which I have built to
understand these issues. This system can be a tool in
learning how to design user-friendly computer interfaces.

PUBLIC VIEW OF COMPUTERS IN THE 1970s
The public view of computers in the 1970s can (somewhat
simplified) be described as consisting of three main ideas:

1. Computers are used to register a lot of information about
people. This registration is a threat to personal privacy.

2. Computers are used to impoverish people, taking away
the interest and value from their work tasks, preventing
them from using their knowledge and competence.

3 . In spite of these two important drawbacks with
computers, we must anyway use them in order to keep the
competitiveness of our economy.

Nowadays (this is written in June 2000) people have a more
varied and positive view of computers. But there is still
reason to try to analyze and understand the issues which
were so controversial in the 1970s, and which can still

teach us much about how to use computers in human-
friendly ways.

A threat to personal privacy
Case 1: “The credit card company notes that mr X registers
with his wife for a double room in a hotel in London. At the
same time, his wife uses her credit card to pay her
hairdresser in Sweden.” This is a typical example of the
arguments given by people about the threat of computers to
personal privacy.

Case 2: An American computer company decided to add,
to their internal e-mail system, a facility which let the
sender check if and when an e-mail was read. This caused
an uproar among employees who felt this to be an invasion
of their personal privacy.

Case 3: In 1979, we introduced the KOM forum system.
KOM gave users a lot of opportunity to check on each
other. A KOM user could see which forums another user
subscribed to, when this user last visited this forum, when a
user read a personal message, etc. In spite of this, there
were very few complaints that this was an invasion of
privacy. Why? We did add a facility for KOM users to say
that their personal information should not be shown to
other users. Almost no users used this facility to protect
their personal privacy. Why, if there is such a large risk
with intrusion on personal privacy through computers?

Case 4: But in one case there was a conflict. The director
of studies at a university department started a forum for
information to teachers. After some weeks, he made a
printout of the KOM page, which shows which teachers
had not participated regularly in this forum, and put a copy
into all their physical mail boxes. He wrote on this copy:
“You are all obliged to participate in this Forum!”. This
caused an uproar among the teachers.

In trying to analyze these cases, my conclusion is as
follows: When people complain about “a threat to personal
privacy”, their real complaint is actually against using
computers to try to control them. The reason so few KOM
users (Case 3 above) complained, was that KOM was
designed very much to be controlled by each user. KOM
users experience KOM as giving them much ability to
control their usage. They can choose which forums to

Published in Creative Crossroads – Electronic Honorary Publication
Dedicated to Yvonne Wærn on Her Retirement, april 2003.

subscribe to, when to go to a forum, in which order to read
news, what to read and what to skip. Because of this
design, they did not feel that KOM was used to control
them.

People felt a threat to personal privacy, when they felt that
large companies and organizations “spied upon them” and
used this information to gain power over them. Because
KOM was not (usually, case 4 is an exception) used in this
way, people did not feel that KOM threatened their
personal privacy, even though KOM allowed users to see a
lot of personal information about other KOM users.

This is very important. Because if we believe that the
problem is with a threat to personal privacy, we may
resolve this problem with methods which makes the
problem worse and not better. By understanding, that the
real issue is about control and power, we can solve the real
problem, by trying to design the software to empowerish
the user, and to make it difficult for large organizations to
use the computer to control people.

The computer impoverishes people
While many people experienced, and sometimes even today
experience, computers as impoverishing them, other people
have the opposite view, that computers increases their
capabilities, empower them instead of inpoverish them.

The more people are experts on the usage of the computer,
the more they tend to feel that the computer empowerishes
them. Especially programmers, who can actually make the
computer do what they want by writing programs, feel that
the computer empowerishes them.

HELPNESSLESS CAUSES DEPRESSION
Seligman 1975 studied people who were depressed, and
concluded that a real or experienced feeling of
helplessness, of inability to influence one's life, was a
major cause of depression.

Gordon 1970 describes how human conflicts are best
solved. The major steps in solving a conflict, is that the
parties try to understand each other. When they have learnt
to understand each other, they can try to find solutions
which are acceptable to both parties, so-called win-win-
solutions.

Harris 1969 describes how a positive view of people
accepting and respecting each other is the basis of solving
problems and causing working relations.

How can the computer influence this? Well, when a user is
using a computer program, this can be seen as a
communication between the designers and programmers
who made the program, and the user who uses them. But
this communication usually very badly fulfills the
requirements of Gordon and Harris. The user has usually
little option to really communicate with those who made
the program. Even when the user can communicate, the
communicating is very much delayed. It often takes year

from a user complaint to a change in the computer
program, even in the best cases.

Newspeak
One way of seeing this is to look at the famous novel
Nineteen eighty-four by George Orwell [7]. This book
describes a future earth, controlled by stalinistic
dictatorships who use all possible tools to control people.
One chapter in the book discusses how to prevent people
from thinking thoughts which the government does not
want them to think. The chapter proposes the invention of a
new language Newspeak. This language would be designed
in such a way that people cannot think unwanted thoughts.
If everyone was allowed to use only this language, the
government could control people's thoughts.

Computers have some similarities with Newspeak.
Computers allow you to communicate only using the user
interface of a particular program – i.e. a special language
which only allows permitted thoughts. The user interface
does not allow anything except what the program was
designed for.

One article which discusses this issue, and which has meant
much for me, is Hoare 1975. Hoare describes a common
process of software development, where developers and
advanced users go through an iterative process which
makes the software more useful for the expert user, but
which also makes the software very difficult to learn, and
thus inpoverishes the non-expert user. So user influence on
software design can actually make the software worse. I am
fully aware that this is a very controversial statement, and it
is not really my wish to argue against user influence in
software design. There is strong reason to believe that user
influence in software design is important. But one should
be aware, that there are risks. There is often a tendency that
the most advanced and expert users are best able to speak
to the developers and have their wishes realized in new
versions of the software.

Language = Power
One should note that language is actually very often used as
a tool for power. For example, medical doctors have a
specialized language, which gives them more power over
the patients, by describing the medical problems in words
which the patient cannot understand. Lawyers and courts
are famous for using legalize, a specialized language which
keeps the ordinary people out. In courts, there are even
rules about who is allowed to say what at what time. If you
know these rules, you can accomodate them to your needs,
if you do not know them, you are impoverished compared
to the legal experts who know the rules. Witnesses are not
allowed to listen to the trial before they are called. The
reason for this is claimed to be that they should not be
influenced by other witnesses. But one could as well argue
for the reverse: By allowing the witnesses to listen, they
can note lies and falsehoods in what other witnesses say.
But the real reason for keeping witnesses outside may be an

issue of power and control: By not letting the witnesses
listen, their information is less, and their control of their
situation is reduced. The power of the insiders is increased,
the outsiders are kept down.

There is ample reason why discussions about language
often gets so heated. People defend their language, because
they defend the security which their ability to communicate
in this language give them.

Cultural fields
The french sociologist Pierre Bourdieus [1] describes how
groups of people form so-called cultural fields, areas in
which insiders follow certain behavioural rules, and
outsiders are kept outside unless they learn to adhere to the
insiders' thinking and behaviour. In the computer area, the
number of cultural fields is large. Every software system or
network protocol has its own insiders, those who are
experts on the software, knows all its facilities and knows
how to get the software to produce what they want. Outside
this group, there is a large group of casual users who
struggle with the software and more or less suceed in
getting the desired result. With time, some of the casual
users become experts and get admitted to the inside circles.

CAN COMPUTERS DECIDE WHAT IS RIGHT AND
WRONG?
It is dangerous to use computers to ensure adherence to
rules, laws and regulations. When rules are interpreted by
humans, the humans are capable of interpreting the rules
with discretion and understand that quite often, the rule

should not be adhered to 100 % in every case. Computers
are not so good at making such judgements. Because of
this, it can be unsuitable to put to much of rule-checking
into software.

Introducing the Issue by an Example
Example: Suppose you equip a motorcar with a computer-
controlled device, a so-called breathanalyzer, which makes
it impossible for you to drive when your blood alcohol
level is above a certain level. And suppose there is an
exceptional case. John has a heart attack, and the only

person available to drive to the hospital, Mary, has drunk a
little too much. The computer stops Mary from driving the
car, and John dies.

My argument: This is an example of a computer making a
decision. The computer decides that John is not allowed to
drive the car, and in this particular case, the decision made
by the computer might be ethically wrong. This is no easy
issue, the best may still be to have such a computer device
in the car. But the example illustrates the problem and the
danger of programming computers to make decisions about
right and wrong.

Counter-argument: No, the computer did not make any
decision. The decision was made by the humans who
programmed the computer. They may have weighed pros
and cons, and decided that the advantage with such a
drunk-driving-protection device is worth the risk that in
some exceptional cases the outcome may be wrong.

My counter-counter-argument: This is becoming a
discussion of the meaning of words. You do not accept that
the computer made a decision. OK, let us then say that the
computer made a ruling, or whatever word you prefer to
apply to the case where a computer prohibits you from
doing something. You are avoiding the ethical issues: In
what way should we program computers to control human
beings.

I am not a fanatical liberal who is against all laws and rules.
I am quite willing to accept that in some cases it may be
ethically right to program computers to prohibit you from
drunken driving or stop children from downloading bomb-
making recipes from the Internet. But I am advocating that
in those cases you are programming the computer into
making decisions, or rulings or whatever word you prefer
to use. And this can be dangerous and you should be aware
of the risks.

Solution: In this special case, a solution might be to allow
the driver of the car to communicate with SOS Alarm, and
allow them to send a code to override the breathanalyzer
lock in some very exceptional cases. By doing this, we are
moving the final decision from computers to humans.

Explanation of Problem
One mode of human communication is the setting of rules.
Some human beings make a list of rules. The rules may be
a law, a local ordinance, ethical rules of a professional
organizations, company rules for employees or published in
other ways. The human beings may also introduce ways of
enforcing the rules, such as courts of law, committees on
ethical conduct, etc. This is sometimes (not always)
necessary even though the rulings made are sometimes
wrong, like convicting innocent people. But we accept that
this risk must be taken because without law and order
society would not work.

An example: Even if it is forbidden for a pedestrian to step
into the street against a red light, there are special cases

where this rule does not apply. Suppose a child runs out on
the street, and the only way to stop the child from getting
run over by a car is to run out and catch the child. Such
special cases are easily handled by humans. No human
court would sentence a person for running across a red light
in such a case. But it is not so easy to teach a computer to
understand such exceptions.

The danger is that people do not always understand, that
putting such rules or laws into a computer, and
programming the computer to enforce the rules, is
something very different from having humans implement
the rules by human decisions. Humans can understand the
special conditions of special circumstances. A human might
decide, in the example above, that in this special case the
importance of getting John to a hospital is higher than the
risk of Mary driving while intoxicated.

Counter-argument: A counter-argument [6] is that in this
case it was humans who made the decisions, by
programming the car computer, but their decisions were
wrong. They did not take all circumstances into account.
They should have made a more advanced program, which
could take into account the special circumstance of the
heart attack situation.

Counter-counter-argument: What you are doing, with
this kind of argument, is to make the computer program
more advanced and complicated, to reduce the risk that the
decisions/rulings made by the computer are wrong. The
path you are treading may make things worse instead of
better. More complex and advanced computer rulings may
increase the risk of wrong decisions instead of reducing
them. The right solution may sometimes instead be to
accept that the computer is not perfect, and thus that all
rules do not have to be enforced by computers alone.

“Italian Strike” Example
A well-known method for strikes is to continue to work,
but to adhere 100 % to all rules while working. This rapidly
causes many businesses to a complete standstill, or at least
makes them work much slower and less efficiently before.

The reason for this is that even good and benevolent rules
can have disastrous effects if adhered to 100 %, the way a
computer would do if programmed to enforce them.

Filling in a Form Example
If you fill in a form manually, you have the option of
adding an accompanying sheet of paper explaining why
you filled in the form in a particular way. In most forms,
where there is a ”yes-no” question, it is quite possible to
omit the checkboxes and write a more nuanced explanation
below or above. The human who receives the form will
read and understand and interpret this. When the form
becomes computerized, this freedom to not follow the
prescribed way of filling in the form often disappears.

Society Evolves by Many People doing Things in Better
Ways
An important way in which human society is evolving is
that many people make small and large decisions to try out
new and better ways of doing things. If the computer
program stops them from doing things in other ways that
those specifically allowed, this will prevent people from
finding better ways of doing things, and thus stop
imrovements.

Sometimes this may be necessary. For example, there is a
human tendency to stop performing actions which are
necessary only to avoid seldom occurring risks. Example:
A pilot forgets an item on the pre-flight check list, or a
night watchman forgets to go to a normally empty part of
the building. In such cases, it may be necessary to use
technical means to ensure that the human follows the rules,
for example the night watchman must turn a key to show
that he has passed that part of the building. But this does
not forbid the night watchman from disobeying the rules in
special cases, for example skip the empty corridor if there
is a thief in another part of the building. The danger is
when the computer does not allow you to do things in other
ways than those foreseen when programming it.

Two-sided Communication is Better than Enforcing one
Solution
It is a well-known fact that power is addictive. That is why
we design human societies with so many safe-guards
against giving individual people too much power. We must
understand that the power to control other humans by
design of computer software can also be addictive [5]. Only
by understanding this, can we stop people from putting too
much control of humans into their software. I am not
arguing that there should be no control of humans by
software. The common “Are you sure?” dialog boxes are
often motivated, even though they are sometimes a
nuisance. But those who design computer software should
be aware of the risks of putting too much control of humans
into the software.

This will reduce the possibillities for people to influence
their environment, and will create a feeling of helplessness,

which may cause dissatisfaction and depression [11]. When
two humans communicate regarding a task, the outcome of
their discussion is usually twosided or so called win-win
solution, a solution where the needs of both are taken into
account [5, 2]. When the task is controlled by a computer
(even though a human did originally program the

computer) the interaction necessary to achieve a win-win
solution is often not possible. It iw well-known that such
situations easily cause frustration and dissatisfaction and
also often mean that a less good way of performing the task
has to be used.

User influence

Human beings hade a need to be able to influence their lifte. They will be more
happy and satisfied, and will be able to do a better job, if they can influen ce
their life, and use their abilities to perform their tasks better and better.

Conventional solution: Give the
users influence on the development
of the software they are going to
use.

Alternative solution: Design the
software so that the users can,
themselves, modify it according to
their present and future needs.

Problems with the conventional
solution:
1. Most software is used by so
many people that everyone cannot
influence its development.
2. When starting to user the
software, users will come up with
new needs, which they were not
aware of when the software was
inititially developed.

Problem with the alternative
solution:
1. The adjustment of the software to
the new needs is too complex for a
non-expert to do.
2. The experts, who can master the
software, are the only people who
benefit.

Corrective action: Users require
new features in the software,
developers get overloaded with
work trying to adjust the software,
there is a huge backload of
software revision tasks, the
software gets more and more
complex through many haphazard
extensions.

Corrective action: Educate special
so-called "local experts", who
work locally in the local user
groups, and help users with
extension of the software to their
needs, using built-in extension
facilities in the software.

Stopping the Porn
An example of an application area, which illustrates the
problems with computers deciding what is right and wrong,
is the area of the porn-blockers, program modules meant to
prevent use of the Internet for unsuitable purposes [6].
They are used by parents who do not want their children to
download porn on the net, by schools and libraries, and also
by employers to stop employees misusing thir office
computers, and even by countries to control the flow of

information and stop undesirable information. The People's
republic of China and Singapore are examples of countries
who want to stop unaccceptable information, such as views
by so-called dissidents.

These programs, however, have severe problems. Either
they permit only access to listed and allowed sites. But
since the developers cannot keep up with all pages on the
Internet, only a small subset is listed. Alternatively, they try
to guess whether a document is suitable or not, this is done

by scanning for certain character strings, like “sex”,
“breast” and “xxx”. This has led to horrendous mistakes,
such as prohibiting information from Middlesex (a local
government in England) or prohibiting information about
breast cancer. A computer user complained that when he
downloaded code in a particular script language from the
Internet, the code was distorted in funny ways. For
example, the following piece of script code:

#define one 1 /* foo menu */
#define two 2 /* bar baz */

Was corrupted in the following way:

#define one 1 /* foo */
fine two 2 /* bar baz */

I leave it to the reader to compare the scripts and conclude
what “Cybersitter” had done with his script code and why.

Is the Internet Illegal
Actually, almost all usage of the Internet is illegal
according to the privacy protection laws in many countries.
These laws prohibit all transport of personal data from one
country to another without permission from the
government. If these laws had been programmed into the
computers, then we could not have had the Internet we
have today. We should be happy that the laws are enforced
by humans who understand that the intention of privacy
protection laws are not to prohibit free speech. You cannot
be sure of this. I ran one of the first Swedish BBS-es in
1978. We were forbidden to run our BBS by the Swedish
Data Inspection Directorate. Later on, we were allowed to
start it again, provided that we did not allow anyone to
write any political or religious opinions in forums on the
BBS (Since the Swedish Data Act forbade the creation of
registries of political and religious opinions, except in
certain special cases, but in contradiction to the Swedish
constitution, which specifically says that the right to
communicate freely on political and religiuous issues
should be protected). We continued to use our BBS
including some discussions of political or religious issues.
No one prosecuted us. But what would have happened if
the computer had been programmed to recognize and
automatically prohibit any message with political or
religious content?

The Computer need not Stop all Unwanted Behavior
The idea that human rulebooks should be programmed into
computers is closely connected to another faulty idea. This
other faulty idea is that anything is legal, which the
computer permits you to do. “The computer did not stop
me from accessing this data”, is the standard defense from
the cracker who breaks into a computer.

If you believe that anything allowed by the computer is
legal, then obviously you have to program the computer to
prohibit all unpermitted behavior. One can understand the
danger of this by trying to envision a society where all
illegal acts are made impossible to perform. Hammers are

not allowed, since you can kill people with a hammer.
Suppose you need a hammer in woodworking. Tough luck,
this is illegal, hammers are inherently dangerous. In order
to prevent crime, every movement from one place to
another without permission might be prohibited and
monitored. Is this the kind of society we want?

A real example which I have actually seen: A building
where I worked was split into zones. Whenever you moved
from one zone to another, you had to insert a keycard into a
slot to open the door. A person inserted the keycard,
opened the door, then dropped the keycard, bent to pick it
up, while the door closed with the person still in front of
the door. The door locked automatically, so the person
inserted the keycard again to open the door. This did not
work. The computer obviously reasoned as follows: “This
person has already passed into the new zone. She cannot be
in front of the door. So her keycard must be falsified or
wrongly used.”

Faulty programming of the computer? Perhaps, but you can
never be sure that your program is perfect. And making the
program more complex by taking into account more special
cases in deciding what the computer allows and prohibits
may introduce more bugs, while removing old bugs in the
software. The new bugs may be more insidous and difficult
to find. All problems are not best solved by making
computer software more complex. Some problems are
better solved by letting humans, instead of computers,
make decisions!

Calendar Scheduling
A good example to discuss these issues is the use of
computers to schedule meetings. This may at first seem like
a good way of using computers. But the more you look at
the problem, the more you find that real meeting scheduling
includes so many special cases, where human judgment is
needed, that it becomes very difficult to get the computer to

do this automatically. For example, some meetings are
more important than other meetings, and may cause other
meetings to be rescheduled, but such a decision cannot be
done by a computer. And there are contextual factors, like
knowing that you should never schedule a meeting with a
certain person on a Monday morning, which everyone
knows, but which are difficult to put into the computer.

INTELLIGENT USER INTERFACES
When we designed the KOM forum system user interface
in the 1980s, we wanted to make the software easy to use
and adaptible to user needs. To achieve this, a user could
rapidly scan through everything new to this user, by a very
simple repeated command. But different forums have
different importance to different people. We then let users
order the list of subscribed forums according to their
personal preferences. The default method of scanning
through news made this in the user-preferred order.

But how should users tell the computer which forums are of
special importance? In the first version, we did not want to
burden users with special commands to reorder the list of
forums. Instead, we designed the software so that whenever
a user exited from a forum, without reading everything new
in this forum, the system automatically concluded that the
forum left should be lowered in priority, and the forum to
which the user moved should get increased priority.

Users, however, did not like this. They felt that the
computer tried to control them, by reordering the list of
forums automatically. So in a later version, we removed the
automatic reordering of forums, and gave users explicit
commands to do this reordering instead.

Conclusions
⇒ The successes of human society is based on the

flexibility of humans and their willingness to adapt
their activities to different circumstances.

⇒ Humans are most happy and productive if they can
influence their living environment and contribute to
solving problems together.

⇒ Laws and regulation are a form of communication
between humans. They are in reality only guidelines,
people have to adapt to varying circumstances and
interpret and apply the rules with understanding and
human compassion. If everyone had to adhere 100 %
to all laws and regulations, human societies would not
work any more.

⇒ This is usually no problem when the laws and
regulations are written on paper. But if the laws and
regulations are programmed into computers, so that the
computers control what is allowed and not allowed,
serious problems will often occur. In the best case,
people will only be unhappy and unproductive, in the
worst case, major catastrophs can occur.

⇒ Computer software must be designed to allow
flexibility and human choice. Laws and regulations
should be interpreted by humans, not by machines.

⇒ Making the software more complex, to include in it
more different special handling of special
circumstances, will often only make it worse. Instead
of complex software, software should be flexible and
open-ended.

⇒ There is a human tendency when designing software to
want to include in it “proper procedure” and
“experience how things should be done”. This
tendency can easily produce unusable or unsuitable
software.

⇒ Possible exception: Certain security rules, where
enforcement is needed to overcome human
weaknesses.

REFERENCES
1. Broady, D.: 1988: Kulturens fält - om Pierre Bourdieus

sociologi. Masskommunikation och kultur, Nordicom-
Nytt/Sverige Nr 1-2, 1988.
http://dsv.su.se/jpalme/society/pierre.html

2. Gordon, T. 1970: P. E. T. - Parent Effectiveness
Training - the tested new way to raise responsible
children. New York : P.H. Wyden 1970, ISBN: 0-
88326-039-5

3. Grip: ADB-system och kommunikation (Data
processing and communication). Hermods-
studentlitteratur, Lund, Sweden, 1974.

4. Harris, T. A.: I'm OK - You're OK, by Thomas A.
Harris, 1969. I'm OK, you're OK: a practical guide to
transactional analysis. New York : Harper & Row
1969.

5. Hoare, T.: Software Design: a Parable. In Software
World, vol. 5, No. 9&10, 1975.
http://dsv.su.se/jpalme/s1/hoare.html

6. Martin, C.D.: Empowering Educators and Parents:
Content Advisories for the Internet. By C. Dianne
Martin, Proceeedings of the ITiCSE ACM conference,
June 1997. URL:
http://www.dsv.su.se/~jpalme/reports/iticse-
notes.html#martin

7. Orwell, G.: Nineteen eighty-four. 1949, ISBN: 0-14-
012671-6

8. Palme, J.: Interactive Software for Humans.
Management Informatics vol. 7(1976). At URL:
(HTML version):
http://info.dsv.su.se/~jpalme/reports/interactive-
software.html and URL (Acrobat version):
http://info.dsv.su.se/~jpalme/reports/interactive-
software.pdf .

9. Palme, J.: User influence on software design may give
less good software, 1997.
http://dsv.su.se/jpalme/s1/control-power-home.html

10. Palme, J.: Can computers decide what is right and
wrong? 1997. http://dsv.su.se/jpalme/reports/right-
wrong.html

11. Seligman, M.E.P.: Helplessness: On depression,
development and death. W.H. Freeman, San Francisco
1975.

