
2007 State of the Universe Address

Werner Dietl
ETH Zurich, Switzerland

Werner.Dietl@inf.ethz.ch
http://www.sct.inf.ethz.ch/

Peter M̈uller
Microsoft Research, USA
mueller@microsoft.com

Abstract
This position paper summarizes recent developments related to the
Universe type system and suggests directions for future work.

1. Universe Type System
The Universe type system is an ownership type system that enforces
the owner-as-modifier discipline. In this section, we summarize re-
cent developments and suggest future work to improve the express-
iveness and formal foundation.

1.1 Expressiveness

The Gang-of-Four design patterns are common design idioms for
object-oriented programs. In [16], we compare how Ownership
Types, Ownership Domains, and Universe Types handle these pat-
terns. Based on this experience, we extended the Universe type sys-
tem to support generics and ownership transfer.

Recent Developments.Generic Universe Types [4] extend Uni-
verse Types to generic types. Like Universe Types, Generic Uni-
verse Types enforce the owner-as-modifier discipline which does
not restrict aliasing, but requires modifications of an object to be
initiated by its owner.

Universe Types with Transfer [15] is an extension of Universe
Types that supports ownership transfer. UTT combines ownership
type checking with a modular static analysis to control references
to transferable objects. UTT is very flexible because it permits
temporary aliases, even across certain method calls. Nevertheless,
it guarantees statically that a cluster of objects is externally-unique
when it is transferred and, thus, that ownership transfer is type
safe. UTT provides the same encapsulation as Universe Types and
requires only negligible annotation overhead.

Future Work. Generic Universe Types reduce the number of ne-
cessary ownership casts in a program. Currently, we investigate
Path-dependent Universe Types [18] to express additional relation-
ships between objects and thereby further reduce the number of
ownership casts.

Universe Types provide a very limited support for static fields
and methods. The main problem is that global data enables a form
of re-entrant method calls that is otherwise prevented by the type
system. This form of re-entrancy causes problems for the verifica-
tion of object invariants. We will formally integrate the Universe
Type System with the Boogie methodology for the verification
of object invariants [11], which can handle arbitrary forms of re-
entrancy.

For the verification of object invariants, one has to control ali-
asing between fields of one object that are declared in different
classes [13, 11]. We are currently extending Universe Types to en-
force an ownership structure where each object has a context for
each superclass of its dynamic type. This will allow us to enforce
that the contexts for different superclasses are disjoint.

Another line of work to support program verification is to build
an effects system on top of Universe Types. This effects system will
be similar to Clarke and Drossopoulou’s work [2], but has to handle
any references, which makes read effects more complex. We plan
to use the effects system to check side effects of methods and to
support reasoning about pure methods.

1.2 Formal Foundation

Recent Developments.We proved in the theorem prover Isabelle
that the Universe type system is sound and that the owner-as-
modifier discipline is enforced [9]. We also wrote a detailed type
safety proof on paper for Generic Universe Types [3]. A similar,
but less comprehensive proof is available for Universe Types with
Transfer [14].

Future Work. We aim at extending our Isabelle formalization of
Universe Types to Generic Universe Types.

2. Type Inference
One strength of the Universe type system is the low annotation
overhead; it is further reduced by appropriate defaults. However,
the resulting ownership structure is flat and annotating existing
software remains a considerable effort. We work on inferring deep
ownership structures using static and dynamic techniques.

2.1 Static Universe Type Inference

Recent Developments.We generate constraints from the Java
AST of a program and use a pseudo-boolean solver to find possible
ownership modifiers [8, 17, 7]. The weighting function of the solver
is used to find a deep ownership structure.

We allow partially annotated programs as input. The program-
mer can simply annotate some fields and method signatures and can
then use the static inference to propagate the ownership modifiers
and to achieve complete code coverage.

Future Work. Currently, the inference tools work with Universe
Types. We will investigate how to incorporate the inference of
Generic Universe Types and Universe Types with Transfer.

Another form of static inference is to infer the types of local
variables from field and parameter types. We are pursuing this line
of work in the context of Universe Type with Transfer. Here, in-
ference for local variables is particularly interesting because locals
can change their type from program point to program point as ob-
jects get transferred. We are currently implementing our ideas in
the JML compiler.

2.2 Runtime Universe Type Inference

Recent Developments.We analyze the execution of standard Java
programs and infer Universe modifiers from the execution traces
[5, 12, 1, 7]. The advantage of runtime Universe type inference
is that the deepest possible ownership structure is deduced. Good

34

http://www.sct.inf.ethz.ch/


code coverage is needed for runtime inference. We allow the user to
combine multiple program traces as input to the inference in order
to achieve good coverage.

Static and runtime Universe type inference can be combined to
get a deep ownership structure and ensure sound results. The result
of the runtime inference is used as weight for the static inference.
The static inference achieves perfect code coverage and can still
change ownership modifiers if that improves the overall structure.

Future Work. A major topic for future work is to apply our
inference to real applications. This will provide valuable insights in
the expressiveness of Universe Types, the power of our inference
tools, and especially to ownership structures that can be found in
large systems. We expect especially the last result to be important
for the ownership community as a whole.

3. Tool Support
3.1 Compiler and Runtime Support

Recent Developments.The type checker for Universe Types is
implemented in the JML tool suite [10] since 2004. The JML
compiler also produces the code needed for the runtime check
of ownership downcasts. It also stores the ownership modifiers in
the bytecode, which allows to typecheck programs without having
the Java source code. We will commit the extensions for Generic
Universe Types soon. The type checker for Universe Types is also
implemented in recent version of ESC/Java2.

To make the interaction with the command-line tools easier for
programmers we developed a set of Eclipse [6] plug-ins. The JML
checker and runtime assertion checking (RAC) compiler can be in-
voked from within Eclipse and we created comfortable configura-
tion dialogs. Error messages are parsed and displayed in a separ-
ate window and code with RAC can be executed from Eclipse. We
also provide code templates that make entering ownership modifi-
ers easy. See Fig. 1 for a screen shot.

Future Work. We are finishing the implementation of the Uni-
verse Types with Transfer type checker and runtime support. This
extension of the JML compiler also supports inference for local
variables. We work on integrating Universe Types with Transfer
and Generic Universe Types.

3.2 Inference Tools

Recent Developments.Executing the command-line inference
tools requires some knowledge to configure the programs correctly.
We provide Eclipse plug-ins that allow the configuration through
dialogs and that make management of temporary results easy.

The results of static inference are displayed in a comfortable
tree view, see left pane in Fig. 2. The user can change ownership
modifiers directly in this pane and see what effects a modification
has—without parsing the source code again.

For the runtime inference, we provide a visualization of the
ownership structure, see right panels in Fig. 2. The programmer can
step through the program execution and observe how the ownership
structure is built up.

Both inference tools create their results in a special annotation
XML format that describes what ownership modifiers need to be
added to a program source. We provide a customized editor for this
XML format and the annotations can be automatically inserted into
the Java source code.

Future Work. We are working on optimizing the inference tools
to handle large programs and will then evaluate the tracing over-
head and inference time. The visualizer for the inference tools is an
interesting playground for visualizing ownership structures.

References
[1] M. Bär. Practical Runtime Universe Type Inference. Master’s thesis,

Department of Computer Science, ETH Zurich, 2006.

[2] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. InObject-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 292–310.
ACM Press, 2002.

[3] W. Dietl, S. Drossopoulou, and P. M̈uller. Formalization of Generic
Universe Types. Technical Report 532, ETH Zurich, 2006.

[4] W. Dietl, S. Drossopoulou, and P. M̈uller. Generic Universe
Types. In E. Ernst, editor,European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer Science.
Springer-Verlag, 2007. To appear.

[5] W. Dietl and P. M̈uller. Runtime universe type inference. In
International Workshop on Aliasing, Confinement and Ownership
in object-oriented programming (IWACO), 2007. To appear.

[6] The Eclipse Foundation. Eclipse — an open development platform.
http://www.eclipse.org/.

[7] A. Fürer. Combining Runtime and Static Universe Type Inference.
Master’s thesis, Department of Computer Science, ETH Zurich, 2007.

[8] N. Kellenberger. Static Universe Type Inference. Master’s thesis,
Department of Computer Science, ETH Zurich, 2005.

[9] M. Klebermaß. An Isabelle Formalization of the Universe Type
System. Master’s thesis, Department of Computer Science, ETH
Zurich, 2007.

[10] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok,
P. Müller, and J. Kiniry. JML reference manual. Department
of Computer Science, Iowa State University. Available fromwww.
jmlspecs.org, 2006.

[11] K. R. M. Leino and P. M̈uller. Object invariants in dynamic contexts.
In M. Odersky, editor,European Conference on Object-Oriented
Programming (ECOOP), volume 3086 ofLecture Notes in Computer
Science, pages 491–516. Springer-Verlag, 2004.

[12] F. Lyner. Runtime Universe Type Inference. Master’s thesis,
Department of Computer Science, ETH Zurich, 2005.

[13] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants
for layered object structures.Science of Computer Programming,
62:253–286, 2006.

[14] P. Müller and A. Rudich. Formalization of ownership transfer in
Universe Types. Technical Report 556, ETH Zurich, 2007.

[15] P. Müller and A. Rudich. Ownership Transfer in Universe Types. In
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2007. To appear.

[16] S. Nägeli.Ownership in Design Patterns. Master’s thesis, Department
of Computer Science, ETH Zurich, 2006.

[17] M. Niklaus. Static Universe Type Inference using a SAT-Solver.
Master’s thesis, Department of Computer Science, ETH Zurich,
2006.

[18] D. Schregenberger.Universe Type System for Scala. Master’s thesis,
Department of Computer Science, ETH Zurich, 2007.

35

http://sct.inf.ethz.ch/projects/student_docs/Marco_Baer/
http://www.eclipse.org/
http://sct.inf.ethz.ch/projects/student_docs/Andreas_Fuerer/
http://sct.inf.ethz.ch/projects/student_docs/Nathalie_Kellenberger/
http://sct.inf.ethz.ch/projects/student_docs/Martin_Klebermass/
http://sct.inf.ethz.ch/projects/student_docs/Martin_Klebermass/
www.jmlspecs.org
www.jmlspecs.org
http://sct.inf.ethz.ch/projects/student_docs/Frank_Lyner/
http://sct.inf.ethz.ch/projects/student_docs/Stefan_Naegeli/
http://sct.inf.ethz.ch/projects/student_docs/Matthias_Niklaus/
http://sct.inf.ethz.ch/projects/student_docs/Daniel_Schregenberger/


Figure 1. Eclipse Integration of JML tools: JML compiler error message in the middle and JML RAC runtime error at bottom.

Figure 2. Inference mode. Static inference results on the left. Visualization of runtime inference in the center.

36


	Universe Type System
	Expressiveness
	Formal Foundation

	Type Inference
	Static Universe Type Inference
	Runtime Universe Type Inference

	Tool Support
	Compiler and Runtime Support
	Inference Tools


