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A b s t r a c t  
We describe the experience of three undergraduate 
computer science programs offering courses on parallel 
computing. In particular, we offer three different solutions 
to the problem of equipping a lab and discuss how those 
solutions may impact the content of the course. 

1 Introduct ion  
During the late 1980's and 90's the National Science 
Foundation sponsored several Undergraduate Faculty 
Enhancement (UFE) workshops that addressed how to 
teach parallel computing to undergraduates. These 
included 1989, 1991, 1992, 1997 and 1998 workshops at 
Colgate University; 1992-1996 workshops at Illinois State 
University; and 1995 workshops at the University of North 
Iowa and California State University, Fresno. 

Most practitioners agree that programming a real parallel 
computer is an essential component to effectively teaching 
parallel computing concepts. While it is possible for 
students to gain insight into some parallel computing 
concepts through theoiy and the use of simulators, there are 
other concepts and practical issues that can only be 
appreciated through experimentation with truly parallel 
hardware. As many non-research focused universities 
cannot justify purchasing high-powered, state-of-the-art 
parallel machines, the UFE workshops tended to suggest 
low cost solutions, such as utilizing systems at 
supercomputing centers, utilizing clusters of workstations, 
or utilizing systems built using inexpensive components, 
such as Inmos Transputers, for the experiential portion of 
the course. 

Two of us have utilized Transputer systems in the early 
versions of our parallel computing courses. However, as 
the 90's come to an end, these systems are no longer viable 
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- the technology is no longer being developed, supported 
or available for sale. This has caused us to look for 
alternative hardware replacements and to reexamine the 
content of our courses. 

In this paper, we present our solutions to the parallel 
hardware selection problem, and examine the effects that 
our hardware selections have had on the content of our 
parallel computing courses. 

• (i) 

(ii) 

(iii) 

(iv) 

2 Our  Paral le l  C o u r s e s  
While our approaches to our courses are different there are ° 
common components and objectives. The objectives of our 
courses are to 

introduce students to the concepts, techniques, and 
architectures of  parallel computing, 

give students extensive practice designing and 
implementing parallel algorithms, 

expose students to several different models of 
parallel computation, and 

provide students with practical, hands-on 
experience of  the benefits of parallel execution. 

The common components include a history of parallel 
computing, parallel architecture, software and performance, 
parallel algorithms, and parallel languages. 

2.1 Calvin College 
Parallel computing is a relatively new course in the 
curriculum at Calvin College. In 1997, Adams attended 
Nevison and Schaller's UFE workshop. In January 1998, 
he drew upon that experience to implement the first 
Parallel Computing 0 course at Calvin College. The course 
is an upper-level elective whose prerequisites are courses in 
Algorithms and Computer Architecture. 

Parallel computing concepts, techniques, and architectures 
are explored through the usual m e a n s  of lectures and 
presentations. Students receive practice designing and 
implementing parallel algorithms through laboratory 
exercises and programming assignments, and are exposed 
to different parallel models by using different parallel 
software packages such as Parallaxis [5] and MPI [8]. 

Parallaxis is a simulator for programming in the data- 
parallel style appropriate to a Single Instruction stream, 
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Multiple Data stream (SIMD) distributed memory, parallel 
architecture. MPI, the Message Passing Interface, is a 
standard library for developing programs for a Multiple 
Instruction Stream, Multiple Data stream (MIMD), 
distributed memory parallel machine in C, C++ or 
FORTRAN. MP! can be used on networks of workstations 
and on most parallel computers available today. This 
means that MPI programs are highly portable. 

At Calvin, students execute their parallel programs in MPI 
• on a workstation cluster to experience firsthand the benefits 

of parallel execution. 

2.2 Colgate University 
The purpose of Parallel Computing [12] at Colgate is to 
provide an overview of the field of parallel computing and 
to develop some understanding of the design, 
implementation and analysis of parallel programs. The 
course description is quite similar to the Calvin College 
course. Two parallel programming platforms are explored 
in the laboratory, Parallaxis and MPI, both described in 
section 2.1. However, at Colgate MPI is executed on a 
dedicated parallel computer, a Parsytec PowerXplorer, 
described below. 

Four laboratory exercises explore programming using 
Parallaxis as an example of programming a SIMD 
machine, while the MPI exercises include message timing, 
data parallel algorithms, processor farm algorithms, and 
irregular divide-and-conquer algorithms such as parallel 
branch-and-bound. 

The Colgate course includes an overview of parallel 
architectures, including some of the history of the 
development of parallel computers and a discussion of 
parallel programming languages in addition to those used 
in the laboratory. Considerable time is spent studying 
techniques for developing parallel algorithms, analyzing 
the algorithms, implementing them as programs, and 
testing the performance of  those programs. 

2.3 Rochester Institute of Technology 
Rochester Institute of  Technology (R/T) offers a two 
course concentration in parallel computing, designed for 
students who have an interest in understanding the 
underlying principles and issues in parallel computing and 
in gaining expertise in the use of parallel systems. Both 
one quarter courses are offered to graduate and upper level 
undergraduate students. 

The first course, Parallel Computing I [14], is similar to the 
courses described above and is designed to provide 
students with the flavor of the hardware and software issues 
in parallel computing. Topics include an introduction to the 
basic concepts, parallel architectures, parallel algorithms, 
parallel languages, network topology, coarse versus fine 
grained parallelism, applications, parallel programming 
design, and debugging. In addition to utilizing Parallaxis 
and MPI, students also experiment with languages designed 
for shared memory SIMD and MIMD computers, High 
Performance FORTRAN (HPF) [16] and C-linda [7], 

respectively. The prerequisite for this course is Operating 
Systems. 

Parallel Computing II [10] is a study of the principal trends 
in parallel algorithm design, through the analysis of 
algorithms used in various areas of application. Specific 
techniques that have gained widespread acceptance are 
highlighted. The course investigates the interplay between 
architecture and algorithmic structure and discusses the 
effect that these issues have on the complexity and 
efficiency of parallel algorithms. 

3 Our Parallel Hardware 
Each of the authors has selected different hardware for 
their students to experiment on in their parallel computing 
courses. The sections that follow tell of the considerations 
that factored into their choices. 

3.1 Calvin College 
The high cost of  a commercial multiprocessor makes it 
difficult for an undergraduate college like Calvin to acquire 
such a machine. This led to exploration of the available 
options for inexpensive parallel computing hardware. 

Since 1994, NASA's Beowulf [3] and its off-spring (e.g., 
Grendel [11], Loki [17], et el.) have demonstrated how 
inexpensive, high-performance multiprocessors can be built 
from commodity, off-the-shelf components (i.e., PCs or 
workstations, ethemet, Linux [9], and MPI or PVM [6]). 
These multiprocessors have come to be known as Beowulf 
clusters, workstation clusters, or just clusters. 

A dedicated cluster can achieve the performance of a 
supercomputer at a small fraction of a supercomputer's 
price. For example, Loki has achieved 1.2 GFLOPS 
(measured) and cost $67,000 to build in 1996; within a year 
the price to build it had dropped to $28,000. Building a 
cluster from new components typically costs from $20,000 
to $200,000, depending on the kind and number of its 
CPUs, memory, disk, and communication infrastructure. 

Converting an existing network of  Unix/Linux 
workstations into a cluster is even less expensive, because 
it costs nothing. With free implementations of MPI (e.g., 
mpich [8]) and PVM available, all one must do is (i) 
download the software, (ii) install it on the 
servers/workstations in the network, and (iii) begin parallel 
processing! 

This is the approach we have taken at Calvin College. Our 
"parallel hardware" consists of the Unix Classroom [1], a 
networked laboratory of 24 Sun workstations and a Sun 
Ultra-2 Enterprise Server. As the department's primary 
computing facility, the Unix Classroom is shared by 
Parallel Computing and other computer science courses, 
which can negatively impact parallel performance (see 
below). 

With Linux, a laboratory of  networked PCs can also be 
converted into a cluster. Ideally, the network should be 
100 Mbps ethernet or faster to reduce communication 
latency, the bottleneck in many parallel computations. 
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As schools upgrade their PCs, another alternative is to 
build a dedicated cluster from cast-off PCs. A Calvin 
student did this for his senior project during the 1998-99 
academic year, building a 3-dimensional hypercube from 
cast-off 486s. He upgraded the RAM on each machine to 
16M, installed Linux and MPI, and had his own dedicated 
cluster for parallel computing. The total cost (for fast 
ethemet cards and a switch) was roughly $6000. 

The MPI vs. PVM debate can take on religious overtones. 
MPI was chosen because unlike PVM, MPI only consumes 
a workstation's resources when that workstation is involved 
in a parallel computation; this is especially important in a 
shared laboratory. MPI was configured to support parallel 
programming in Fortran-7.7, C, and C++, all using the 
GNU gee compiler. 

3.2 Colgate University 
Colgate is fortunate to have a dedicated parallel computer, 
a 32 node Parsytec PowerXplorer. (This equipment, which 
cost about $125,000, was partially supported by an NSF 
ILI grant, DUE-9551105.) Each node in this system has a 
PowerPC-601 for computation and a transputer T805 for 
communications, with 8 MB of memory per node. The 
nodes are connected in a 4 x 8 mesh network. 

The PowerXplorer runs both PVM and MP1 message 
passing systems as well as its own proprietary message 
passing. Colgate University used PVM in the past and 
currently uses MPI for teaching purposes. Up to four users 
can access partitions of the machine at the same time, using 
8, 16, 24, or 32 processors in a partition. The combination 
of  multiple users and up to 32 processors to dedicate to one 
problem made this an excellent choice for our purposes. 

The PowerXplorer has a SUN workstation host, which is 
tied into the Colgate laboratory network. Students can 
access our parallel system from any other computer in the 
lab, or, indeed, from any machine on the internet. In fact, 
this course has been offered to Hamilton College students 
simultaneously with Colgate University students using 
remote conferencing facilities at the two colleges, and the 
Hamilton College students have used the Colgate 
equipment over the interact. Students and faculty from 
Washington and Lee University have also used the Colgate 
equipment for research projects. 

Because of the dedicated hardware, students are able to do 
routing, timing, and speedup studies without the problems 
inherent in a general purpose network. 

3.3 Rochester Institute of Technology 
The environment at RIT is a bit different than that at Calvin 
or Colgate. Not only is it a technical university rather than 
a liberal arts college, but the number of students in the 
computer science major is a factor of  at least ten more. 

The environment of the RIT computer science laboratories 
consists of clusters of  networked, Unix workstations 
connected to servers that provide a distributed file system 
and printing support. Because its undergraduate computer 
science majors number around 450, it is important that its 

parallel computing hardware be accessible from this 
environment. 

The department's first parallel computing equipment, an 88 
node Transputer system, had required a sizable investment 
(more than $200,000) and were, for all practical purposes, 
used only for the courses in the parallel computing 
concentration. Given the number of  students taking this 
concentration and the effective demise of  NSF equipment 
grants meant that such a large amount of  money was not 
likely to be available for such a specialized investment for 
replacement equipment. 

Many options for replacement were explored, including 
using clusters of  workstations but experimentation with 
PVM had indicated that parallel computing students would 
likely have a negative impact on the performance of  the 
computer science computing environment if that 
mechanism were chosen. This impact could be avoided if 
the cluster were isolated, but then the parallel equipment 
would not be accessible from the general environment. 
Ultimately, it became desirable to purchase equipment that 
could be used both as a parallel processor and as a more 
general purpose computer. 

Another consideration was to limit the maintenance impact 
for the department. The department's general purpose 
computing equipment consists mostly of  Sun Microsystems 
workstations with some from Silicon Graphics, Inc. 
Therefore, options from both of  these companies were 
explored: the SGI Origin 2000 and the Sun 450 fileserver. 
While the architecture of  the Origin was enticing, 
negotiations provided quotes for more processors for 
substantially less money from Sun. 

Ultimately, the department purchased two four node, 
symmetric multi-processor (SMP) Sun 450 fileservers for 
less than $70,000. (This price was due in part to being part 
of  a much larger purchase.) Sun suggests that these servers 
be connected using Scalable Coherent Interface (SCI) 
interconnects for high-speed communications within the 
cluster, but due to price considerations, the two 450's are 
instead connected to each other using a dedicated ethernet 
connection. Sun's HPC (High Performance Computing) 
package offers a variety of  software to explore, including 
HPF, MPI, PVM, and LSF (Load Sharing Facility). 

4 How Equipment Affects Content 
Choice of hardware can significantly affect the content of a 
course in parallel computing. For example, an instructor 
might tend to assign only projects and exercises that map 
naturally to their hardware configuration, or might .tend to 
ignore issues that are only important 'on other hardware 
platforms. The following sections present the authors' 
reflections on this problem. 

4.1 Calvin College 
At Calvin College, we try not to let our use of a cluster 
affect what concepts we cover in our course. We like to 
think that we would teach the same concepts, regardless of 
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the hardware that we use, because our course is intended to 
provide a general introduction to parallel computing. 

However, it is our opinion that much (most?) of  a student's 
learning in a course occurs outside of  the lecture format, as 
the student works to solve problems. We also believe that 
our parallel hardware shapes the kinds of  problems we give 
students to solve, as well as the forms of our students' 
parallel solutions (as do the programming languages in 
which they write those solutions). For example, because 
ethernet is a broadcast medium, the educational value of  
message-timing exercises using a cluster is rather limited 
compared to a dedicated parallel machine. So our choice 
of  a cluster directly affects what our students learn, 
because it colors their experience of parallel behavior. Our 
problem is to minimize this constriction of what our 
students learn. 

One way we seek to solve this problem is by using both 
Parallaxis and MPI, because exclusive use of  either results 
in an incomplete course. That is, Parallaxis lets students 
experiment with different connection topologies, and 
mapping parallel algorithms onto specific topologies, but 
they do not experience the speedup of parallelism. The 
opposite occurs with MP1 on our cluster: students 
experience first-hand the speed-up of  parallel execution; 
but its bus topology restricts their problem solutions. 
Parallaxis and MPI thus complement one another nicely. 

We also try to solve the problem by seeking cost-effective 
ways to diversify our students' parallel experience. For 
example, recent hardware price drops let us upgrade our 
lab's server from a uniprocessor to a symmetric 
multiprocessor (SMP). Our students now receive hands-on 
experience in SMP multithreading, beyond their experience 
using our cluster. 

The primary drawback to building a cluster from an 
existing laboratory of  networked workstations is 
communication latency. I f  other users are in the lab, then a 
parallel computation competes with those users for network 
bandwidth, negatively impacting the parallel performance 
of our computation. To avoid this problem, our parallel 
computing students receive 24-hour access to the lab and 
are encouraged to measure a program's performance when 
the lab is empty. 

This workaround is far from perfect, so we have applied to 
the NSF's Major Research Instrumentation (MR_I) program 
for funding to build a cluster dedicated for parallel 
computation. I f  our proposal is successful, this cluster will 
be the subject of  a future report. 

Our hardware choices cannot help but affect what students 
take away from a course. In an introductory parallel 
computing course, our aim is to minimize the negative 
effects of  those choices. 

4.2 Colgate University 
As at Calvin, we strive to teach the fundamental concepts 
of  parallel computing independent of  the hardware used. 
In order to do this it is important to expose students to 

different approaches to implementing parallel programs. 
We do this by using Parallaxis for simulated SIMD 
computing and MPI on a dedicated parallel message- 
passing architecture. We hope to add the opportunity to do 
computing on a shared memory multi-processor in the near 
future. 

Using Parallaxis students learn about some of the 
fundamental ideas of  SIMD computing, but without a 
chance to experience or experiment with the speedup of a 
true parallel machine. Using MPI on our PowerXplorer 
system, students not only can see true parallel speedups, 
but they can also experiment with some features such as 
routing, message-timing, and different mappings of  a 
parallel algorithm to an architecture. For example in one 
lab, we measure the times for messages going around a ring 
first as mapped automatically to the machine, not a 
physical ring, and second mapped to a physical ring 
embedded in the mesh of  the machine. In this lab students 
see the importance of the underlying machine topology and 
are also able to do accurate measures of  message latency. 
Other labs include understanding of  the mapping of the 
algorithm to the physical topology of  the machine and 
speedup measurements on a dedicated machine. These labs 
would not be possible without a dedicated parallel 
machine. The combination provides an appropriate breadth 
of experience for an introductory course. 

Because we use these two platforms and not, currently, a 
shared memory system, the content of  our course focuses 
more on the message-passing paradigm and deals less with 
shared-memory algorithms and the associated control 
structures. 

4.3 Rochester Institute of Technology 
At RIT, we try as well to minimize the effect that the 
available hardware has on the concepts taught in the 
course. But, the purchase of  our new equipment did affect 
the experiments our students were able to try. 

On our Transputer system, students programmed in 
Parallaxis (SIMD, distributed memory), C-linda (MIMD, 
shared memory in simulator mode), and Occam [4] 
(MIMD, distributed memory); the use of  FORTRAN 
(SIMD, shared memory) as a parallel language was 
presented in lecture. With the new equipment, we use 
Parallaxis and MPI for the same reasons discussed above. 
We also use C-linda in non-simulator mode and HPF to 
provide experience with shared memory paradigms. In both 
cases, the students had an opportunity to experience the 
programming paradigms used on most available parallel 
hardware. With the new machine, we have also 
encouraged students to experiment with multi-threading, 
PVM, LSF, and with a variety of  Java parallel computing 
variants [15]. 

We have found that our (new) dual SMP's provide some 
unexpected challenges and real-world experiences for our 
students. For example, because our machine is accessible 
to everyone, we experience similar difficulties as at Calvin 
in timing the effects adding more processors to the solution 
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of the problem. This has led to experimenting with batch 
queues both during day and night time. Also, our choice of 
interconnection network between the SMPs means that 
often when a fifth processor is added to the execution of a 
problem that it will often take more time to execute rather 
than less. Furthermore, finding the appropriate compiler 
options, and system and environment variables to optimize 
a particular solution to a problem on this system is a 
challenge. An effect of this is that both the teacher and 
students alike are encouraged to explore and share their 
results in the classroom and through e-mail: what worked, 
what did not, and an analysis of why. This has added 
another dynamic to the course. Challenges such as these are 
ones that students are likely to encounter as programmers 
once they leave school. Learning to overcome them and to 
select an appropriate solution to a particular problem is an 
invaluable lesson. 

5 Future Directions 

RIT bases much of its parallel course on the use of two 
SMP machines; Calvin College has started to use multi- 
threading on an SMP as well as MPI on a workstation 
cluster; and Colgate has recently installed a 4 processor 
SMP which we plan to work into the parallel course in the 
future. With four (and soon eight) processor SMP 
machines becoming reasonably priced, many smaller 
schools will be able to afford them as means to introduce 
students to true parallel processing. Thus we see a 
combination of work with message-passing on dedicated 
machines or on networks of workstations combined with 
the use of small SMP machines as a likely combination for 
laboratories for parallel computing. (One caution however, 
the use of threads in C/C++ or Java on such machines 
currently involves the use of low level primitives for 
synchronization and control. Higher level constructs are 
needed and under development, such as versions of CSP 
for threads in Java [13].) The scientific and industrial use 
of SIMD architectures seems to be dwindling, so this will 
likely become a less important component of courses on 
parallel computing in the future. 

6 Conclusions 
There are many paths to select from to provide 
undergraduate students with real parallel computing 
experience. We offer three alternatives that have worked 
for us along with a flavor of our courses in hopes that 
others may benefit from our experience. Each alternative 
includes a different approach to equipping a laboratory for 
parallel computing and the ramifications that the equipment 
has for the content of the course. 
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