
Parallel Computing to Start the Millennium

Joel Adams
Computer Science

Calvin College
Grand Rapids, MI 49546

adams@calvin.edu

Chris Nevison
Computer Science
Colgate University
Hamilton, NY 13346

chris@cs.colgate.edu

Nan C. Schaller
Computer Science

R.I.T.
Rochester, NY
ncs@cs.rit.edu

A b s t r a c t
We describe the experience of three undergraduate
computer science programs offering courses on parallel
computing. In particular, we offer three different solutions
to the problem of equipping a lab and discuss how those
solutions may impact the content of the course.

1 Introduct ion
During the late 1980's and 90's the National Science
Foundation sponsored several Undergraduate Faculty
Enhancement (UFE) workshops that addressed how to
teach parallel computing to undergraduates. These
included 1989, 1991, 1992, 1997 and 1998 workshops at
Colgate University; 1992-1996 workshops at Illinois State
University; and 1995 workshops at the University of North
Iowa and California State University, Fresno.

Most practitioners agree that programming a real parallel
computer is an essential component to effectively teaching
parallel computing concepts. While it is possible for
students to gain insight into some parallel computing
concepts through theoiy and the use of simulators, there are
other concepts and practical issues that can only be
appreciated through experimentation with truly parallel
hardware. As many non-research focused universities
cannot justify purchasing high-powered, state-of-the-art
parallel machines, the UFE workshops tended to suggest
low cost solutions, such as utilizing systems at
supercomputing centers, utilizing clusters of workstations,
or utilizing systems built using inexpensive components,
such as Inmos Transputers, for the experiential portion of
the course.

Two of us have utilized Transputer systems in the early
versions of our parallel computing courses. However, as
the 90's come to an end, these systems are no longer viable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers o¢ to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3/00 Austin, TX, USA
© 2000 ACM 1-58113-213- I /00/0003. . .$5.00

- the technology is no longer being developed, supported
or available for sale. This has caused us to look for
alternative hardware replacements and to reexamine the
content of our courses.

In this paper, we present our solutions to the parallel
hardware selection problem, and examine the effects that
our hardware selections have had on the content of our
parallel computing courses.

• (i)

(ii)

(iii)

(iv)

2 Our Paral le l C o u r s e s
While our approaches to our courses are different there are °
common components and objectives. The objectives of our
courses are to

introduce students to the concepts, techniques, and
architectures of parallel computing,

give students extensive practice designing and
implementing parallel algorithms,

expose students to several different models of
parallel computation, and

provide students with practical, hands-on
experience of the benefits of parallel execution.

The common components include a history of parallel
computing, parallel architecture, software and performance,
parallel algorithms, and parallel languages.

2.1 Calvin College
Parallel computing is a relatively new course in the
curriculum at Calvin College. In 1997, Adams attended
Nevison and Schaller's UFE workshop. In January 1998,
he drew upon that experience to implement the first
Parallel Computing 0 course at Calvin College. The course
is an upper-level elective whose prerequisites are courses in
Algorithms and Computer Architecture.

Parallel computing concepts, techniques, and architectures
are explored through the usual m e a n s of lectures and
presentations. Students receive practice designing and
implementing parallel algorithms through laboratory
exercises and programming assignments, and are exposed
to different parallel models by using different parallel
software packages such as Parallaxis [5] and MPI [8].

Parallaxis is a simulator for programming in the data-
parallel style appropriate to a Single Instruction stream,

65

Multiple Data stream (SIMD) distributed memory, parallel
architecture. MPI, the Message Passing Interface, is a
standard library for developing programs for a Multiple
Instruction Stream, Multiple Data stream (MIMD),
distributed memory parallel machine in C, C++ or
FORTRAN. MP! can be used on networks of workstations
and on most parallel computers available today. This
means that MPI programs are highly portable.

At Calvin, students execute their parallel programs in MPI
• on a workstation cluster to experience firsthand the benefits

of parallel execution.

2.2 Colgate University
The purpose of Parallel Computing [12] at Colgate is to
provide an overview of the field of parallel computing and
to develop some understanding of the design,
implementation and analysis of parallel programs. The
course description is quite similar to the Calvin College
course. Two parallel programming platforms are explored
in the laboratory, Parallaxis and MPI, both described in
section 2.1. However, at Colgate MPI is executed on a
dedicated parallel computer, a Parsytec PowerXplorer,
described below.

Four laboratory exercises explore programming using
Parallaxis as an example of programming a SIMD
machine, while the MPI exercises include message timing,
data parallel algorithms, processor farm algorithms, and
irregular divide-and-conquer algorithms such as parallel
branch-and-bound.

The Colgate course includes an overview of parallel
architectures, including some of the history of the
development of parallel computers and a discussion of
parallel programming languages in addition to those used
in the laboratory. Considerable time is spent studying
techniques for developing parallel algorithms, analyzing
the algorithms, implementing them as programs, and
testing the performance of those programs.

2.3 Rochester Institute of Technology
Rochester Institute of Technology (R/T) offers a two
course concentration in parallel computing, designed for
students who have an interest in understanding the
underlying principles and issues in parallel computing and
in gaining expertise in the use of parallel systems. Both
one quarter courses are offered to graduate and upper level
undergraduate students.

The first course, Parallel Computing I [14], is similar to the
courses described above and is designed to provide
students with the flavor of the hardware and software issues
in parallel computing. Topics include an introduction to the
basic concepts, parallel architectures, parallel algorithms,
parallel languages, network topology, coarse versus fine
grained parallelism, applications, parallel programming
design, and debugging. In addition to utilizing Parallaxis
and MPI, students also experiment with languages designed
for shared memory SIMD and MIMD computers, High
Performance FORTRAN (HPF) [16] and C-linda [7],

respectively. The prerequisite for this course is Operating
Systems.

Parallel Computing II [10] is a study of the principal trends
in parallel algorithm design, through the analysis of
algorithms used in various areas of application. Specific
techniques that have gained widespread acceptance are
highlighted. The course investigates the interplay between
architecture and algorithmic structure and discusses the
effect that these issues have on the complexity and
efficiency of parallel algorithms.

3 Our Parallel Hardware
Each of the authors has selected different hardware for
their students to experiment on in their parallel computing
courses. The sections that follow tell of the considerations
that factored into their choices.

3.1 Calvin College
The high cost of a commercial multiprocessor makes it
difficult for an undergraduate college like Calvin to acquire
such a machine. This led to exploration of the available
options for inexpensive parallel computing hardware.

Since 1994, NASA's Beowulf [3] and its off-spring (e.g.,
Grendel [11], Loki [17], et el.) have demonstrated how
inexpensive, high-performance multiprocessors can be built
from commodity, off-the-shelf components (i.e., PCs or
workstations, ethemet, Linux [9], and MPI or PVM [6]).
These multiprocessors have come to be known as Beowulf
clusters, workstation clusters, or just clusters.

A dedicated cluster can achieve the performance of a
supercomputer at a small fraction of a supercomputer's
price. For example, Loki has achieved 1.2 GFLOPS
(measured) and cost $67,000 to build in 1996; within a year
the price to build it had dropped to $28,000. Building a
cluster from new components typically costs from $20,000
to $200,000, depending on the kind and number of its
CPUs, memory, disk, and communication infrastructure.

Converting an existing network of Unix/Linux
workstations into a cluster is even less expensive, because
it costs nothing. With free implementations of MPI (e.g.,
mpich [8]) and PVM available, all one must do is (i)
download the software, (ii) install it on the
servers/workstations in the network, and (iii) begin parallel
processing!

This is the approach we have taken at Calvin College. Our
"parallel hardware" consists of the Unix Classroom [1], a
networked laboratory of 24 Sun workstations and a Sun
Ultra-2 Enterprise Server. As the department's primary
computing facility, the Unix Classroom is shared by
Parallel Computing and other computer science courses,
which can negatively impact parallel performance (see
below).

With Linux, a laboratory of networked PCs can also be
converted into a cluster. Ideally, the network should be
100 Mbps ethernet or faster to reduce communication
latency, the bottleneck in many parallel computations.

66

As schools upgrade their PCs, another alternative is to
build a dedicated cluster from cast-off PCs. A Calvin
student did this for his senior project during the 1998-99
academic year, building a 3-dimensional hypercube from
cast-off 486s. He upgraded the RAM on each machine to
16M, installed Linux and MPI, and had his own dedicated
cluster for parallel computing. The total cost (for fast
ethemet cards and a switch) was roughly $6000.

The MPI vs. PVM debate can take on religious overtones.
MPI was chosen because unlike PVM, MPI only consumes
a workstation's resources when that workstation is involved
in a parallel computation; this is especially important in a
shared laboratory. MPI was configured to support parallel
programming in Fortran-7.7, C, and C++, all using the
GNU gee compiler.

3.2 Colgate University
Colgate is fortunate to have a dedicated parallel computer,
a 32 node Parsytec PowerXplorer. (This equipment, which
cost about $125,000, was partially supported by an NSF
ILI grant, DUE-9551105.) Each node in this system has a
PowerPC-601 for computation and a transputer T805 for
communications, with 8 MB of memory per node. The
nodes are connected in a 4 x 8 mesh network.

The PowerXplorer runs both PVM and MP1 message
passing systems as well as its own proprietary message
passing. Colgate University used PVM in the past and
currently uses MPI for teaching purposes. Up to four users
can access partitions of the machine at the same time, using
8, 16, 24, or 32 processors in a partition. The combination
of multiple users and up to 32 processors to dedicate to one
problem made this an excellent choice for our purposes.

The PowerXplorer has a SUN workstation host, which is
tied into the Colgate laboratory network. Students can
access our parallel system from any other computer in the
lab, or, indeed, from any machine on the internet. In fact,
this course has been offered to Hamilton College students
simultaneously with Colgate University students using
remote conferencing facilities at the two colleges, and the
Hamilton College students have used the Colgate
equipment over the interact. Students and faculty from
Washington and Lee University have also used the Colgate
equipment for research projects.

Because of the dedicated hardware, students are able to do
routing, timing, and speedup studies without the problems
inherent in a general purpose network.

3.3 Rochester Institute of Technology
The environment at RIT is a bit different than that at Calvin
or Colgate. Not only is it a technical university rather than
a liberal arts college, but the number of students in the
computer science major is a factor of at least ten more.

The environment of the RIT computer science laboratories
consists of clusters of networked, Unix workstations
connected to servers that provide a distributed file system
and printing support. Because its undergraduate computer
science majors number around 450, it is important that its

parallel computing hardware be accessible from this
environment.

The department's first parallel computing equipment, an 88
node Transputer system, had required a sizable investment
(more than $200,000) and were, for all practical purposes,
used only for the courses in the parallel computing
concentration. Given the number of students taking this
concentration and the effective demise of NSF equipment
grants meant that such a large amount of money was not
likely to be available for such a specialized investment for
replacement equipment.

Many options for replacement were explored, including
using clusters of workstations but experimentation with
PVM had indicated that parallel computing students would
likely have a negative impact on the performance of the
computer science computing environment if that
mechanism were chosen. This impact could be avoided if
the cluster were isolated, but then the parallel equipment
would not be accessible from the general environment.
Ultimately, it became desirable to purchase equipment that
could be used both as a parallel processor and as a more
general purpose computer.

Another consideration was to limit the maintenance impact
for the department. The department's general purpose
computing equipment consists mostly of Sun Microsystems
workstations with some from Silicon Graphics, Inc.
Therefore, options from both of these companies were
explored: the SGI Origin 2000 and the Sun 450 fileserver.
While the architecture of the Origin was enticing,
negotiations provided quotes for more processors for
substantially less money from Sun.

Ultimately, the department purchased two four node,
symmetric multi-processor (SMP) Sun 450 fileservers for
less than $70,000. (This price was due in part to being part
of a much larger purchase.) Sun suggests that these servers
be connected using Scalable Coherent Interface (SCI)
interconnects for high-speed communications within the
cluster, but due to price considerations, the two 450's are
instead connected to each other using a dedicated ethernet
connection. Sun's HPC (High Performance Computing)
package offers a variety of software to explore, including
HPF, MPI, PVM, and LSF (Load Sharing Facility).

4 How Equipment Affects Content
Choice of hardware can significantly affect the content of a
course in parallel computing. For example, an instructor
might tend to assign only projects and exercises that map
naturally to their hardware configuration, or might .tend to
ignore issues that are only important 'on other hardware
platforms. The following sections present the authors'
reflections on this problem.

4.1 Calvin College
At Calvin College, we try not to let our use of a cluster
affect what concepts we cover in our course. We like to
think that we would teach the same concepts, regardless of

67

the hardware that we use, because our course is intended to
provide a general introduction to parallel computing.

However, it is our opinion that much (most?) of a student's
learning in a course occurs outside of the lecture format, as
the student works to solve problems. We also believe that
our parallel hardware shapes the kinds of problems we give
students to solve, as well as the forms of our students'
parallel solutions (as do the programming languages in
which they write those solutions). For example, because
ethernet is a broadcast medium, the educational value of
message-timing exercises using a cluster is rather limited
compared to a dedicated parallel machine. So our choice
of a cluster directly affects what our students learn,
because it colors their experience of parallel behavior. Our
problem is to minimize this constriction of what our
students learn.

One way we seek to solve this problem is by using both
Parallaxis and MPI, because exclusive use of either results
in an incomplete course. That is, Parallaxis lets students
experiment with different connection topologies, and
mapping parallel algorithms onto specific topologies, but
they do not experience the speedup of parallelism. The
opposite occurs with MP1 on our cluster: students
experience first-hand the speed-up of parallel execution;
but its bus topology restricts their problem solutions.
Parallaxis and MPI thus complement one another nicely.

We also try to solve the problem by seeking cost-effective
ways to diversify our students' parallel experience. For
example, recent hardware price drops let us upgrade our
lab's server from a uniprocessor to a symmetric
multiprocessor (SMP). Our students now receive hands-on
experience in SMP multithreading, beyond their experience
using our cluster.

The primary drawback to building a cluster from an
existing laboratory of networked workstations is
communication latency. I f other users are in the lab, then a
parallel computation competes with those users for network
bandwidth, negatively impacting the parallel performance
of our computation. To avoid this problem, our parallel
computing students receive 24-hour access to the lab and
are encouraged to measure a program's performance when
the lab is empty.

This workaround is far from perfect, so we have applied to
the NSF's Major Research Instrumentation (MR_I) program
for funding to build a cluster dedicated for parallel
computation. I f our proposal is successful, this cluster will
be the subject of a future report.

Our hardware choices cannot help but affect what students
take away from a course. In an introductory parallel
computing course, our aim is to minimize the negative
effects of those choices.

4.2 Colgate University
As at Calvin, we strive to teach the fundamental concepts
of parallel computing independent of the hardware used.
In order to do this it is important to expose students to

different approaches to implementing parallel programs.
We do this by using Parallaxis for simulated SIMD
computing and MPI on a dedicated parallel message-
passing architecture. We hope to add the opportunity to do
computing on a shared memory multi-processor in the near
future.

Using Parallaxis students learn about some of the
fundamental ideas of SIMD computing, but without a
chance to experience or experiment with the speedup of a
true parallel machine. Using MPI on our PowerXplorer
system, students not only can see true parallel speedups,
but they can also experiment with some features such as
routing, message-timing, and different mappings of a
parallel algorithm to an architecture. For example in one
lab, we measure the times for messages going around a ring
first as mapped automatically to the machine, not a
physical ring, and second mapped to a physical ring
embedded in the mesh of the machine. In this lab students
see the importance of the underlying machine topology and
are also able to do accurate measures of message latency.
Other labs include understanding of the mapping of the
algorithm to the physical topology of the machine and
speedup measurements on a dedicated machine. These labs
would not be possible without a dedicated parallel
machine. The combination provides an appropriate breadth
of experience for an introductory course.

Because we use these two platforms and not, currently, a
shared memory system, the content of our course focuses
more on the message-passing paradigm and deals less with
shared-memory algorithms and the associated control
structures.

4.3 Rochester Institute of Technology
At RIT, we try as well to minimize the effect that the
available hardware has on the concepts taught in the
course. But, the purchase of our new equipment did affect
the experiments our students were able to try.

On our Transputer system, students programmed in
Parallaxis (SIMD, distributed memory), C-linda (MIMD,
shared memory in simulator mode), and Occam [4]
(MIMD, distributed memory); the use of FORTRAN
(SIMD, shared memory) as a parallel language was
presented in lecture. With the new equipment, we use
Parallaxis and MPI for the same reasons discussed above.
We also use C-linda in non-simulator mode and HPF to
provide experience with shared memory paradigms. In both
cases, the students had an opportunity to experience the
programming paradigms used on most available parallel
hardware. With the new machine, we have also
encouraged students to experiment with multi-threading,
PVM, LSF, and with a variety of Java parallel computing
variants [15].

We have found that our (new) dual SMP's provide some
unexpected challenges and real-world experiences for our
students. For example, because our machine is accessible
to everyone, we experience similar difficulties as at Calvin
in timing the effects adding more processors to the solution

68

of the problem. This has led to experimenting with batch
queues both during day and night time. Also, our choice of
interconnection network between the SMPs means that
often when a fifth processor is added to the execution of a
problem that it will often take more time to execute rather
than less. Furthermore, finding the appropriate compiler
options, and system and environment variables to optimize
a particular solution to a problem on this system is a
challenge. An effect of this is that both the teacher and
students alike are encouraged to explore and share their
results in the classroom and through e-mail: what worked,
what did not, and an analysis of why. This has added
another dynamic to the course. Challenges such as these are
ones that students are likely to encounter as programmers
once they leave school. Learning to overcome them and to
select an appropriate solution to a particular problem is an
invaluable lesson.

5 Future Directions

RIT bases much of its parallel course on the use of two
SMP machines; Calvin College has started to use multi-
threading on an SMP as well as MPI on a workstation
cluster; and Colgate has recently installed a 4 processor
SMP which we plan to work into the parallel course in the
future. With four (and soon eight) processor SMP
machines becoming reasonably priced, many smaller
schools will be able to afford them as means to introduce
students to true parallel processing. Thus we see a
combination of work with message-passing on dedicated
machines or on networks of workstations combined with
the use of small SMP machines as a likely combination for
laboratories for parallel computing. (One caution however,
the use of threads in C/C++ or Java on such machines
currently involves the use of low level primitives for
synchronization and control. Higher level constructs are
needed and under development, such as versions of CSP
for threads in Java [13].) The scientific and industrial use
of SIMD architectures seems to be dwindling, so this will
likely become a less important component of courses on
parallel computing in the future.

6 Conclusions
There are many paths to select from to provide
undergraduate students with real parallel computing
experience. We offer three alternatives that have worked
for us along with a flavor of our courses in hopes that
others may benefit from our experience. Each alternative
includes a different approach to equipping a laboratory for
parallel computing and the ramifications that the equipment
has for the content of the course.

[2] Adams, J., "The Design and Implementation of a
UNIX Classroom", Twenty-fourth SIGCSE Technical
Symposium on Computer Science Education,
Indianapolis, Indiana, March, 1992.

[3] Becker, D., Sterling, T., Savarese, D., Dorband, J.,
Ranawak, U., Packer, C., "Beowulf: A Parallel
Workstation for Scientific Computation, '~ Proceedings,
International Conference on Parallel Processing,
1995. See also http://www.beowulf.org/.

[4] Bowen, J., The Occam archive, Last update May 1994,
http://www.comlab.ox.ac.uk/archive/occam.html.

[5] Braunl, T., Parallaxis-III - A Structured Data-Parallel
Programming Language, Last update January 1995,
http://www.ee.uwa.edu.au/-braunl/parallaxis/.

[6] Geist, AI, PVM Parallel Virtual Machine, Last update
August 1999, http://www.epm.oml.gov/pvm/.

[7] Gelemter, D., Carriero, N., Linda Group (Yale
University), http://www.cs.vale.edu/Linda/linda.html.

[8] Grop, B. and Lusk, R., The Message Passing Interface
(MPI) Standard, Last update February 1999,
http://www-unix.mcs.anl.gov/mpi/.

[9] Hekman, Land Dram A. (eds.), Linux In A Nutshell : A
Desktop Quick Reference (Nutshell Handbook),
O'Reilly & Associates, 1997. See also
http ://www.linux.org/.

[10]Kitchen, A., Parallel Computing II, Last update May
1999, http :/ /www.cs.rit.edu/~atk/7 36/P ALG98 3.htrnl.

[11] Ligon, W., Grendel: The Clemson Beowulf
Workstation, Last update December 1997,
http://ece.clemson.edu/parl/grendel.htm.

[12]Nevison, C., Parallel Computing, Last updated
September 1999,
http ://149.43.80.141/CSLabWebPages/CS445_Web_p
ages/.

[13] Nevison, C., Seminar: Safe Concurrent Programming
in Java with CSP, Proceedings of 13 th SIGCSE
Symposium (March, 1999), ACM Press, 367.

[14]Schaller, N., Parallel Computing I, Last update May
1999, http://www.cs.rit.edu/~ncs/Courses/531.shtml.

[15]Schaller, N., Java for Parallel/High Performance
Computing, Last update June 1999,
http://www.cs.rit.edu/~ncs/parallel.html#jav

[16] Tevis, P., High Performance Fortran, Last update June
1999, http://dacnet.rice.edu/Depts/CRPC/HPFF/.

[17] Warren, M., "Loki - Commodity Parallel Processing,"
Last update April 1998, http://loki-www.lanl.gov/.

References

[1] Adams, J., Introduction to Parallel Computing, Last
update May 1999, http://cs.calvin.edu/CS/parallel/.

69

