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A bstr act algorithms are implemented in software running on an embedded pro-
cessor, or using custom hardware units, and whether the memory used
Security is a concern in the design of a wide range of embedded syt store intermediate data during these computations is on the same
tems. Extensive research has been devoted to the developmentabfip as the computing unit or on a separate chip.
cryptographic algorithms that provide the theoretical underpinnings The “separation of concerns” between functional security mecha-
of information security. Functional security mechanisms, such as sexisms and their implementation has enabled (and is, arguably, nec-
curity protocols, suitably employ these mathematical primitives inessary for) rigorous theoretical analysis and design of cryptosystems
order to achieve the desired security objectives. However, functionalnd security protocols. However, in the process, various assump-
security mechanisms alone cannot ensure security, since most etions are made about the implementation of functional security mech-
bedded systems present attackers with an abundance of opportunit@sisms. For example, itis typically assumed that the implementations
to observe or interfere with their implementation, and hence to comef cryptographic computations are ideal “black-boxes” whose inter-
promise their theoretical strength. nals can neither be observed nor interfered with by any malicious en-
This paper surveys various tamper or attack techniques, and esty. Aided by these assumptions, the level of security is widely quan-
plains how they can be used to undermine or weaken security fundified in terms of the mathematical properties of the cryptographic
tions in embedded systems. Tamper-resistant design refers to the peglgorithms and their key lengths.
cess of designing a system architecture and implementation that is In practice, however, functional security mechanisms alonéare
resistant to such attacks. We outline approaches that have been pfmm being complete security solutions [6, 7, 8, 9]. It is unrealistic
posed to design tamper-resistant embedded systems, with examptesassume that attackers will attempt to directly take on the computa-

drawn from recent commercial products. tional complexity of breaking the cryptographic primitives employed
. in security mechanisms. An interesting analogy can be drawn in this
1 1 ntroductl on regard between strong cryptographic algorithms and a highly secure

. . L . ) lock on the front door of a house [7]. Burglars attempting to break
Digital computing and communications increasingly pervade ouinto a house will rarely try all combinations necessary to pick such a
lives, our economy, and our nations’ critical infrastructure. Almost|ock; they may break in through windows, break a doors at its hinges,
everything today is electronic, digital and on-line. Security and proor rob owners of a key as they are trying to enter the house.
tection of digital assets is emerging as a discipline of utmost impor- - Similarly, almost all known security attacks on embedded sys-
tance. This is especially true for embedded systems, which, due f@ms target weaknesses in the implementation and deployment of
various constraints, present several unique security challenges [1, 2inctional security mechanisms and their cryptographic algorithms.

Embedded system security can be broken into a collection of morghese weaknesses can allow attackers to completely bypass, or sig-
specific concerns, such as confidentiality, integrity, and availabilitynificantly weaken, the theoretical strength of security solutions. Such

Confidentiality is about stopping unauthorized users from accessingnplementation vulnerabilities abound in embedded systems, due to
sensitive information stored in, or communicated by, the system. Thghe following reasons:

bulk of computer security research has centered around confidential- . .
ity, whose roots date as far back as ancient civilizations [3]. Datain- ® OPeration in untrusted environment: Many embedded sys-
tegrity ensures that data in the embedded system has not been deleted €MS have to guarantee secure operation even under the physi-
or altered by someone without permission. Software integrity ensures ~ €&l possession of untrusted owners. It is easier to design a se-
that the programs in the system have not been altered, whether by an  curé embedded system if we can rely on innate physical secu-
error, a malicious user, or a virus. To a large extent, confidentiality is "t of the device, or assume that parts of the system cannot be
about unauthorized reading of data and programs, while integrity s~ Physically accessed by malicious entities. However, embedded
concerned with unauthorized writing. Availability refers to the em- systems are sometimes required to work under complex trust
bedded system being accessible when needed, and without undue de- 'élationships, where one party wants to put a secure device in
lay, upon demand by an authorized entity. For example, availability ~ the hands of another, with the assurance that the second party
is about ensuring that denial of service attacks do not succeed. cannot modify the innards of the secure device. For example, a
Security has long been a concern in computing and communica- ~ °ank may want to keep some information on a smart card thatis
tions systems, and substantial research effort has been devoted to ad- " the hands of its customers, while ensuring that the customers
dressing it. Cryptographic algorithms, including symmetric ciphers, ~ cannot tamper with the device or modify the information it con-
public-key ciphers, and hash functions, form a set of primitives that ~ t&ins. Another common scenario with embedded systems that
can be used as building blocks to construct security mechanisms that ~ré portable and have small form factors is loss or theft, which
target specific objectives [4]. For example, network security proto-  could place the system in the hands of untrusted entities for a
cols, such as IPSec and SSL, combine these primitives in order to significant period of time.
achieve authentication between communicating entities, and ensure ¢ Network induced vulnerability: Anincreasing number of em-
the confidentiality and integrity of communicated data [5]. We refer bedded systems have networking capabilities, which exposes
to these mechanisms &mctional security mechanisms, since they them to many sources of attack. It is no longer necessary to
only specify what functions are to be performed, irrespective of how have physical possession of the device in order to break its se-
these functions are implemented. For example, the specification of  curity mechanisms. Devices with wireless connectivity, or those
a security protocol is usually independent of whether the encryption  that connect to the Internet, are the most vulnerable.



e Downloaded software execution: The drive to provide richer
functionality and increased customizability to the end-users of
embedded systems often requires the ability to execute un-
trusted softwaregg., freeware or third-party software down-
loaded from the Internet) on them. Software programs (includ-
ing viruses, worms, and trojan horses) are by far the instruments
of choice in launching security attacks. The magnitude of this
problem will only worsen with the rapid increase in the software
content of embedded systems.
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e Complex design process In order to meet stringent design & = - = Faul Inection =~ - -
turn-around time and cost constraints, complex embedded sys- ¢ g Torooronim
tems are being assembled using components from multiple <5 proome

sources spread across corporate boundaries. The responsibility .
for ensuring system security typically falls upon the manufac- Tg;'c"g lectromagneti Software
turer of the end product that is sold, or upon the entity that pro- "5 Attacks
vides services based on the end product. However, it may not
be possible to pre-validate each system component to ensure se-
curity. Furthermore, even if each part of a system is secure in Figure 1:Taxonomy of attacks on embedded systems

itself, it is known that the composition of parts may expose new

vulnerabilities [10]. Due to the lack of suitable design method- e Physical or Invasive attacks, which refer to attacks that require
ologies, modeling and optimization of security during embed- physical intrusion into the system at some level (chip, board, or
ded system design is already a poorly understood art [11]; the  system level).

above factors only serve to exacerbate this problem.

Side-Channel
Attacks

e Sde-channd attacks, which refer to attacks that are based on

Designing systems that are absolutely tamper-proof is often not ~ Observing properties of the system while it performs crypto-
possible, primarily due to two reasons: (1) prohibitive costs incurred ~ 9raphic operationsg.g., execution time, power consumption,
in putting together a device that can withstand innumerable, often O behavior in the presence of faults.
unknown, attacks, and (2) relentless and rapid improvements in tech- The agents used to launch attacks may either be passive in the
nology constantly, which increase the reach and capability of attacksense that they do not interfere in any manner with system execution
ers. In response to this reality, the practical approach is to implemene.g., merely probe or observe certain properties), or may actively
tamper-resistant embedded systems, which translates to tamper-proointerfere with the target system’s operation. Integrity and availabil-
for almost all practical purposes. ity attacks require interference with the system in some manner, and
In summary, achieving high levels of security requires strong funchence can be launched only through active agents.
tional security mechanisms that are embodied in tamper-resistantim- |t bears mentioning that, although we have classified attacks into
plementations. The design of tamper-resistant implementations rearious categories for the sake of understanding. In practice, attackers
quires a strong awareness of the potential implementation weaknesssfsen use a combination of various techniques to achieve their objec-
that can become security flaws, and careful consideration of securites. For example, physical attacks may be used as a pre-cursor to
during all aspects of the architecture, hardware, and software desigfide-channel attacks (removing a chip’s packaging before observing
processes. In this paper, we first outline the major attack techniquaie values on global wires within the chip). Our classification is also
that can threaten the security of an embedded system. Then, W& no means exhaustive, nor is it intended to be — the ingenuity of
present various countermeasures for the prevention of, detection afttackers who invariably come up with new schemes to break security

and recovery from, attacks, and discuss their effectiveness in enhang-arguably the greatest challenge to tamper-resistant design.
ing embedded system security.

2 Attacks on Secure Embedded Sys 21 SoftwareAttacks

t Software attacks represent a major threat to embedded systems that
ems are capable of downloading and executing application code. Com-

Figure 1 shows a broad classification of attacks on embedded syggre_d to physical and side-channel attacks, software attacks typically
quire infrastructure that is substantially cheaper and easily avail-

tems. Atthe top level, attacks are classified into three main categon%%le to most hackers, making them a serious immediate challenge

based on their functional objectives. ; -
to secure embedded system design. These attacks are implemented
e Privacy attacks: The objective of these attacks is to gain knowl- through malicious agents such as viruses, worms, trojan hatses,
edge of sensitive information stored, communicated, or manipand can compromise the security of a system from all standpoints —
ulated within an embedded system. integrity, privacy, and availability.
. . Malicious software agents mount software attacks by exploiting
¢ L@gg%:ﬁﬁﬁ ;r? Zfﬁbité?j(:elfjs S?;?énnﬁ)'t to change data or COdt}‘/\/e‘_slknesse_s in the end-system archit_ecture [12, 13, 14, 1_5, 16]. They
typically arise due to shortcomings in the software, which can be
o Availability attacks: These attacks disrupt the normal function- termed as eithevulnerabilities or exposures [12]. A vulnerability
ing of the system by mis-appropriating system resources so thatllows the attacker to gain direct access to the end-system, while an
they are unavailable for normal operation. exposure is an entry point that an attacker may indirectly exploit to

A second level of classification of attacks on embedded systems |aun access. . .
'Iéhe buffer overflow problem is a common loophole in operat-

based on the agents or means used to launch the attacks. These agent Systems and application software, which can be exploited during

. . . . R ng
are typically grouped into three main categories as shown in Figure is.'oftware attacks [17]. The problem can arise whenever buffers are

e Software attacks, which refer to attacks launched through soft- present with poor bound checks. Buffer bounds may be violated due
ware agents such as viruses, trojan horses, waams, to incorrect loop bounds, format string attacks, Buffer overflows



effects can include overwriting stack memory, heaps, and function
pointers. The attacker can use buffer overflows to overwrite program  0.0002 ~
addresses stored nearby. This may allow the attacker to transfer con-
trol to malicious code, which when executed can have undesirable
effects.

A good high-level introduction to the challenges involved in writ-
ing secure code can be found in [18].

2.2 Physical and Side-channel attacks MMMWW WWWMWWWWW

Various physical and side-channel attacks can be launched against an
embedded system. Historically, many of these attacks have been or- . T T .

chestrated in the context of low-end embedded systems such as smart- 00001 0.00015

cards [19, 20, 21, 22, 23]. However, with these attacks increasingly Time (seconds)

becoming sophisticated and shown to be deployable against many

electronic systems, they are considered a significant challenge to ti&gure 2:The power consumption profile of a custom hardware im-
process of designing secure embedded systems. plementation of the DES algorithm
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they require reasonably high resolution to reveal the cryptographic

For an embedded system on a circuit board, physical attacks cawy directly. In practice, SPA attacks have been found be useful in
be launched by using probes to eavesdrop on inter-component comugmenting or simplifying brute-force attacks. For example, it has
munications. However, for a system-on-chip, sophisticated microbeen shown in [25] that the brute-force search space for a SW DES
probing techniques become necessary [19, 20]. The first step in su@mplementation on an 8-bit processor with 7 Bytes of key data can be
attacks is de-packaging. De-packaging involves removal of the chipeduced to 20 keys from 26 keys with the help of SPA.
package by dissolving the resin covering the silicon using fuming DPA attacks [26] employ statistical analysis to infer the crypto-
acid. The next step involves layout reconstruction using a systematigraphic key from power consumption data. These attacks use the no-
combination of microscopy and invasive removal of covering layerstion of differential traces (difference between traces) to overcome the
During layout reconstruction, the internals of the chip can be inferredlisadvantages of measurement error and noise associated with SPA
at various granularities. While higher-level architectural structuresechniques. DPA has been shown to be highly robust and effective in
within the chip such as data and address buses, memory and préextracting keys from several embedded systems, not limited to smart-
cessor boundariesfc., can be extracted with little effort, detailed cards [26]. Recent approaches such as [25] enhance the effectiveness
views of lower-level structures such as the instruction decoder andf DPA attacks by providing techniques that improve the signal-to-
ALU in a processor, ROM cellstc., can also be obtained. Finally, noise ratio. While the initial DPA attacks [25, 26, 27] targeted DES
techniques such as manual microprobing or e-beam microscopy ai@plementations, DPA has also been used to break public-key cryp-
typically used to observe the values on the buses and interfaces of thesystems [28].
components in a de-packaged chip. o

Physical attacks at the chip level are relatively har to use because &f Ming Attacks

their expensive infrastructure requirements (relative to other attacks). Timing attacks [29, 30, 31] exploit the observation that the exe-
However, they can be performed once and then used as precurs@igion times of cryptographic computations are data-dependent, and,
to the design of successful non-invasive attacks. For example, layoylnce can be used to infer the cryptographic key. The variations

reconstruction is needed before performing electromagnetic radiatiq execution time can arise from implementation- or architecture-
monitoring around selected chip areas. Likewise, the knowledge cgpecific properties, such as:

ROM contents, such as cryptographic routines and control data, can ] _ o _
provide an attacker with information that can assist in the design of a e Instruction Execution Time Variations: Software implementa-

suitable non-invasive attack. tions of cryptographic computations (such as the modular ex-
) ponentiation operation) often invoke the processor’'s multiply
Power Analysis Attacks and divide instructions. Since these instructions take a variable

The power consumption of any hardware circuit (cryptographic number of cycles based on the data inputs in many processors,
ASICs or processors running cryptographic software) is a function of ~ €xecution time statistics of the cryptographic algorithm can be
the switching activity at the wires inside it. Since the switching activ- collected and analyzed for a wide range of data in order to break
ity (and hence, power consumption) is data dependent, it is not sur- the key.

prising that the key used in a cryptographic algorithm can be inferred o performance optimizations: The use of performance optimiza-
from the power consumption statistics gathered over a wide range of  tions in a cryptosystem may introduce execution paths in its im-
input data. These attacks are called power analysis attacks and have plementation that are more sensitive to data statistics than oth-
been shown to be very effective in breaking embedded systems such  enwise. For example, timing attacks against implementations
as smartcards. Power analysis attacks are categorized into two main  of the RSA algorithm that use the Chinese Remainder Theorem
Analysis (DPA) attacks. _ _ can be used to easily compute the decryption key.

SPA attacks rely on the observation that in some systems, the
power profile of cryptographic computations can be directly used tg-4 ¢ Injection Attacks
reveal cryptographic information [24]. For example, Figure 2 shows
the power consumption profile for an ASIC implementing the DES  Fault injection attacks rely on varying the external parameters and
algorithm. From the profile, one can easily identify the 16 roundsenvironmental conditions of a system such as the supply voltage,
of the DES algorithm. While SPA attacks have been useful in de<lock, temperature, radiatiostc., to induce faults in its components.
termining higher granularity information such as the cryptographicThe injected faults can be transient or permanent, and can compro-
algorithm used, the cryptographic operations being perforreied,  mise the security of a system in several ways:



e Availability Attacks: Faults can be injected to disrupt the normal
functioning of the system. For example, the bus in an embedded
system on chip can be made unavailable for performing inter-
component communications through permanent faults that set
the bus lines to a constant value.

e |ntegrity attacks: These attacks can be used to corrupt the se-
cure or non-secure code or data stored in components such as
memories.

e Privacy attacks: An interesting example of the use of fault in-
jection attacks to reveal cryptographic keys involves RSA im-
plementations that use the Chinese Remainder Theorem (CRT) e
optimization [32]. The optimization, intended to enhance the
performance of the modular exponentiation operation in RSA,
in fact, increases its vulnerability against fault injection attacks.

It has been shown in [32] that the RSA modulus can be factored
very easily if faults can be introduced to affect the outputs of

power characteristics are data independent), and software de-
sign (e.g., software authentication before execution).

¢ In the event that an attack is launched despite any employed

prevention techniquesttack detection techniques attempt to
detect the attack as soon as possible. The elapsed time interval
between the launch of an attack and its detection (the detection
latency) represents a period of vulnerability, and needs to be
kept as low as possible. An example of attack detection is the
run-time detection of illegal memory accesses to secure data
from an untrusted software application.

Once an attack is detected, the embedded system needs to take
appropriate actionAttack recovery refers to techniques used to
ensure that the attack is countered, and that the system returns
to secure operation. Attack recovery techniques could include
locking up the system and rendering it useless for further op-
eration, zeroing out sensitive data in memory, or displaying a

security warning and rebooting the system. The design of at-
tack recovery schemes involves tradeoffs between the level of
security and the inconvenience caused to users in the usage of
the system after an attack.

one of the sub-exponentiations being performed.

e Pre-cursor attacks: Fault injection techniques are also useful
as a pre-cursor to software attacks. For example, it has been
shown in [33] that simple memory faults induced by heat can
be exploited by an untrusted program running on a processor to e
assume complete control of its execution environment.

In some cases, it may be desirable to preserve an irrefutable,
persistent record of the attack in the embedded system, for in-
spection at a later timelamper evident design techniques tar-

get this objective. Analogies of physical tamper evident design
mechanisms abound: seals that have to be broken, wires that
have to be cut, or coatings that have to be removed. In all cases,
tamper evidence requires a mechanism that cannot be reversed
by malicious entities.

Electromagnetic Analysis Attacks

Electromagnetic analysis attacks (EMA) have been well docu-
mented since the eighties, when it was shown in [34] that electro-
magnetic radiation from a video display unit can be used to recon-
struct its screen contents. Since then, these attacks have only grown
in sophistication [35]. The basic premise of many of these attacks is In the rest of this section, we describe design techniques to counter
that they attempt to measure the electromagnetic radiation emitted yach of the specific categories of attacks described earlier. Classifi-
a device to reveal sensitive information. Successful deployment ofation of these design techniques into attack prevention, detection,
these attacks against a single chip would require intimate knowledgecovery, and tamper evidence is left as an exercise to the reader.
of its layout, so as to isolate the region around which electromagnetic

radiation measurements must be performed. Like power analysis aé—
tacks, two classes of EMA attacks, namely, simple EMA (SEMA) 3.1~ Counter measures for Software Attacks

and differential EMA (DEMA) attacks have been proposed [36, 37]. Countermeasures for software attacks are typically designed with one
. . or more of the following considerations:
3 Tamper Resistant Design: Counter- X
ing Security Attacks

In this section, we survey tamper-resistant design techniques that
have been proposed to strengthen embedded systems against the vari-
ous attacks described in the previous section. In order to better under- ¢ Remove security loopholes in software that make the system
stand and compare approaches to tamper-resistant design, we decom- vulnerable to such attacks.

pose the objective of tamper resistance into more specific, narrower \;qqt system-level countermeasures attempt to, at least, address the
objectives, as shown in Figure 3. first considerations listed above. A common feature of these counter-

measures involves regulating the accesses of various software compo-
Attack Attack
detection recovery

e Ensure privacy and integrity of sensitive code and data during
every stage of software execution in an embedded system.

¢ Determine with certainty that it is safe from a security stand-
point to execute a given program.

nents (operating system, downloaded catie) to different portions
of the system (registers, memory regions, security co-processors,
etc.) during different stages of execution (boot process, normal exe-
cution, interrupt modegtc.), through a combination of hardware and
software changes. Since an effective countermeasure must allow the
system to provide guarantees about the security of the system starting
from the powered-on state, most measures define notions of trust or
trust boundaries (also referred to asecurity perimeters) across the
various hardware and software resources. This allows the system to
detect infringements of trust boundaries (such as illegal accesses to
. . L ) . memory regions) and enforce recovery mechanisms (such as zero-
Figure 3:Specific objectives of tamper-resistant design approacheﬁ1g processor registers and memory regions). Thus, a trust boundary
provides a natural and convenient foundation for the system to make
o Attack prevention techniques make it more difficult to initiate judicious decisions about its security (or compromise, thereof).

an attack on the embedded system. These techniques can in-In the rest of this section, we will focus on understanding indi-

clude physical protection mechanisneg(, packaging), hard- vidual countermeasures that typically make up a software tamper-

ware design €g., circuit implementations whose timing and resistance strategy — hardware additions, secure bootstrapping, se-
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cure OS features, software integrity and safety checks, and methotism should encrypt information immediately before sending data to
for finding and fixing security loopholes in software. untrusted components. Therefore, a CFS moves the encryption and
decryption services from the user level into the operating system it-
self, thereby protecting sensitive information from application-level

A common approach to implementing tamper-resistance involve¥ulnerabilities (assuming that the OS is secure).

_the use of a separate secure Co-processor modulg [3%_3, 39, 40], Whi%BftwareAuthentication and Validation
is dedicated to processing all sensitive information in the system.

Any sensitive information that needs to be send out of the secure Secure execution of known software in a system requires that it
COo-processor is encrypted. is validated before execution. One of the most common techniques
Many embedded system architectures rely on designating angsed to validate the integrity of a known piece of software involves
maintaining selected areas of its memory subsystem (volatile or norcomputing a hash or checksum of the code (or its critical sections)
volatile, off-chip or on-chip) as secure storage locations. Physicaand verifying it against a pre-computed golden value. More recent
isolation is often used to restrict the access of secure memory aretechniques such as oblivious hashing [54] also hash the execution

to trusted system components. When this is not possible, a memotyace of a piece of code, thereby verifying its run-time behavior.
protection mechanism adopted in many embedded SOCs involves theIn order to run untrusted application code, it is prudent to use tech-
use of bus monitoring hardware that can distinguish between legaliques that can providsandboxes (restricted environments for code)
and illegal accesses to these locations. For example, the CrypoCédr execution. This is a feature of many virtual machines includ-
security solution from Discretix [41] features BusWatcher, which per-ing the Java Virtual Machine (JVM). Software mechanisms such as
forms this function. Ensuring privacy and integrity in the memory proof-carrying code [55] require an untrusted code supplier to bundle
hierarchy of a processor is the focus of [42], which employs a hardsafety proofs with the program executables, so that the system can
ware secure context manager, new instructions, and hash and encrgscertain that the code will not violate its security policies. This tech-
tion units within the processor. The work in [43] describes a modehique is useful, for example, in determining whether a piece of code
of execute only memory (XOM), and architectural techniques to imcan be allowed to execute in the kernel's address space. In such a
plement it, using hardware enhancements such as custom instructiocese, the system would require proof that the program will maintain
and additional fields in cache lines, together with a software virtuathe consistency of the kernel’s data structures. This approach requires
machine monitor. Similar ideas were also described earlier in [44]. the compiler to be enhanced for generating such proofs.

Recently announced commercial initiatives such as ARM’s Trust- Program sheperding [56] is another approach that prevents execu-
Zone [45], Microsoft's Palladium or NGSCB [46, 47], and Intel's La- tion of malicious code by monitoring all control transfers in a pro-
Grande [48]gtc. feature various hardware enhancements for securitygram and checking that a given security policy is not violated. Code
Later in this paper, we will examine the hardware enhancements fasrigin checks, restricted control transfers, and guaranteed sandbox-
security proposed in ARM’s TrustZone technology (see Section 3.3)ing are used to prevent program vulnerabilities, overwrites of stored
program addresses, and execution of malicious code. This technique
can be implemented to operate on generic executables by altering

One of the early works that explores the notion of a trust boundaryun-time execution environments.
is the AEGIS architecture [49] that examines the problem of securing  Since many of the known reasons for software attacks stem from
the boot process in the IBM PC architecture. AEGIS provides a hivulnerabilities in trusted software, software verification engines are
erarchical solution to the problem by exploiting the layered nature obecoming increasingly important for detecting errors that make a
the boot process. Starting from power on, the system can move to tigystem prone to attacks. For example, extended static checking,
next layer in the boot process if and only if a sequence of integritywhich is useful for finding errors in source code during compile time,
checks have been successfully performed on the current layer (afiés been used to identify security flaws in many programs [57, 58].
all layers below it). The integrity checks involve computing the hashFormal verification techniques such as model checking have also
value of a boot process component and comparing it with a securelgeen successfully applied to verify implementations of security pro-
stored value. Thus, a trust boundary is progressively expanded pri¢ecols [59, 60].
to handing off the system controls to the operating system in a secure
manner.

Hardware Support

Secure Bootstrapping

3.2 Countermeasures for Physical and Side-

channel Attacks

Most security schemes rely on OS modifications in order to pro- ) ] ) ] o ]
vide protection to sensitive code and/or data. For example, MiPackaging technologies, physical security for sensitive information
crosoft's NGSCB initiative advocates a secure Nexus mode for Winthrough the use of cryptoprocessors, environmental attack protec-
dows that (a) provides strong process isolation, and (b) performéon measures, careful design of the HW/SW implementation to make
process-level attestation. Process isolation ensures that private fetoperties such as timing and power insensitive to the input eiata,
sources of one process can be protected from another process, wHilg¢ common ways of countering physical and side-channel attacks.
attestation ensures that code can be authenticated before establidese countermeasures are discussed below.
ing communication channels between processes and devices. Otkﬁ{ysical Attack Protection
OS enhancements for security could include modifications to con-
text switching, exception handling, inter-process communication, Several advanced packaging and attack response techniques have
and memory management. It is important to note that many obeen recommended by the Federal Information Processing Standard
these operating system changes would require (or are in responfelPS 140-2) [61]. For example, the standard specifies four increas-
to) architecture-level modifications (such as memory managemering levels of physical (as well as other) security requirements that can
system changes) for security [50]. Emerging OS architectures sudbe satisfied by a secure system. Security Level 1 requires minimum
as [51] claim to offer good flexibility and better isolation than existing physical protection, Level 2 requires the addition of tamper-evident
solutions under various application scenarios. mechanisms such as a seal or enclosure, while Level 3 specifies

Other features offered by a secure OS include the usage of crytronger detection and response mechanisms. Finally, Level 4 man-
tographic file systems (CFSs) to provide secure storage [52, 53]. Aates environmental failure protection and testing (EFP and EFT).
CFS operates on the principle that trusted components of the sy3hus, increasingly high levels of security can be provided albeit at

Operating System (OS) Enhancements



higher chip costs. 3.3 Case Study: ARM TrustZone

An example of a cryptographic module that provides very high lev-
els of physical security is IBM’s 4758 PCI cryptographic adapter [39,
40] (FIPS 140-1 Level 4). The device includes internal tamper cir-The TrustZone security technology [45] from ARM provides a com-
cuitry to detect physical penetrations as well as sensor circuitry tenercial example of how countermeasures against software attacks
detect and respond to temperature and voltage attacks. (and limited physical attack protection) are implemented for an em-
bedded system-on-chip. The primary objective of TrustZone is to
establish a clear separation of access to sensitive information and

A good countermeasure against bus probing attacks involvegther HW/SW portions of an ARM-based system-on-chip architec-
the use of processors that encrypt all information sent on globdure. This is achieved by evolving a secure domain using a “trusted
buses [62, 63]. Such processors ensure that only encrypted code/d&ggle base” that resides in a secure area of the processor. The trusted
values remain in the open (memory, address and data betsds, code base is responsible for regulating the security of the entire sys-
which are then decrypted within the processor on-the-fly. The procedem, starting from the system boot sequence. In addition, the trusted
sor is also required to encrypt any value before it is released outsideode is responsible for all security tasks that involve manipulation of
its 1/0 boundary. While such processors tend to achieve high levelkeys.
of security, they also entail significant performance overheads. Inad- ~ F-==-=-=== - mmmmm e
dition, practical implementations have been found to be vulnerable
to specialized forms of side-channel attacks, necessitating additional
countermeasures [64].

Busencryption

Secure
Interrupt

ETB ARM

TCM

Side-channel Attack Protection Measures

Various countermeasures against side-channel attacks have b
proposed to remove the symptoms that make an embedded SysStds
vulnerable to monitoring and analysis of side-channel information
such as power, timing, and electromagnetic radiation. Randomizatio[_rov_ |
is frequently used as an effective measure against any side-chann€
attack that requires the attacker to know exactly when a certain oper-
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ation is performed. For example, the use of a randomized clock sig- SYSTEM BOUNDARY — e e eoeoe o ]
nal is suggested as an effective means to introduce non-determinism i
in smartcard processors [19]. This countermeasure also requires the | I svre [ Sered [ Normal‘

introduction of random switching activity during the idle cycles as-
sociated with a random clock to prevent reconstruction of the clockrigure 5:Components of an embedded system-on-chip architecture
signal. demarcated into secure and non-secure areas [45]

Several mechanisms have been proposed to counter individual
side-channel attacks. Techniques to counter power analysis at- The trusted code base is protected by implementing a separate se-
tacks [25, 26] include data masking to hide sensitive information, usgure domain as shown in Figure 4. Non-secure applications are de-
of reduced signal amplitudes, and introduction of noise into powehied access to the trusted code base, while trusted applications are
measurement data. These mechanisms provide tamper resistancei@gntified before they are provided access. This demarcation is en-
increasing the number of samples needed for a successful power anffitced by the addition of a security tag called “S-bit” throughout the
ysis attack to an infeasibly large number. Aggressive shielding techarchitecture. The S-bit defines the security operation state of the sys-
niques as well as methods that break the locality of chip layout (thaiem and is used to denote parts of the system (ARM core, memory
is, allow for components in a chip to be spread across the entirdystem, selected peripheratic.), which are secure. Access to the
chip surface) are effective in defeating electromagnetic analysis af-bit is through a separate processor operating mode aatiador
tacks [36]. Transient fault attacks on cryptographic hardware can bewode, which itself can be accessed through a limited and pre-defined
prevented by using concurrent error detection methods [65], whilget of entry points. The monitor mode is responsible for controlling
sensors that monitor environmental changes can be effective in déhe S-bit, verifying that data and instruction accesses made by an ap-

tecting various fault injection attacks and launching appropriate replication are permitted as well as ensuring a secure transition between
covery mechanisms [66]. secure and non-secure states.

The use of TrustZone to secure a typical embedded SOC is shown

% Application ‘ Secure in Figure 5, wherein the security perimeter of the system extends be-
e \ Application yond the processor core to the memory hierarchy and peripherals.
' Accessto N /ncoessto The overall SOC architecture is divided into secure and non-secure
' trusted code "~ trusted code i i i i

\ base e © regions. For example, the boot code is stored securely in the on-chip

boot ROM since modifications to the boot process would render any
security scheme ineffective. The memory is segmented into secure
and non-secure areas. The S-bit and the monitor mode are used to
ensure that secure data is not leaked to the non-secure area. Excep-

trusted code . . X .. K K

base tion handling is also partitioned into normal and secure areas. Since
secure interrupts can be used to freeze the processor when it is processing
kernel sensitive information, the monitor mode is used to process critical

interrupts.

Figure 4: Providing security against malicious software attacks in  In summary, the TrustZone technology provides an architecture-
ARM TrustZone [45] level security solution to enforce a trusted code base, enable certifi-

cation of trusted software independent of the operating system (OS),
and provide protection against malicious software attacks.



4 Conclusions 32]

In this paper, we examined the various ways in which embedded sy$33]
tems can be attacked by malicious agents. For these scenarios, we
also saw how a wide array of countermeasures have been developgg}
by researchers to provide tamper resistance in embedded systems. We
believe that a clear understanding of attacks as well as the trade-off®!
associated with deploying tamper resistance mechanisms will enable
a system architect to develop a truly secure embedded system. [36]
Acknowledgements: The authors thank Divya Arora (Princeton Uni-
versity) and Vijay Raghunathan (University of California, Los Ange- [37]
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